

Welcome to Python Social Auth’s documentation!

Python Social Auth aims to be an easy to setup social authentication and
authorization mechanism for Python projects supporting protocols like OAuth (1
and 2), OpenId and others.

The initial codebase is derived from django-social-auth [http://github.com/omab/django-social-auth] with the idea of
generalizing the process to suit the different frameworks around, providing
the needed tools to bring support to new frameworks.

django-social-auth [http://github.com/omab/django-social-auth] itself was a product of modified code from
django-twitter-oauth [https://github.com/henriklied/django-twitter-oauth] and django-openid-auth [https://launchpad.net/django-openid-auth] projects.

The project is now split into smaller modules to isolate and reduce
responsibilities and improve reusability.

Contents:

	Introduction
	Features

	Installation
	Dependencies

	Get a copy

	Using the extras options

	Configuration
	Configuration

	Django Framework

	Flask Framework

	Pyramid Framework

	CherryPy Framework

	Webpy Framework

	Porting from django-social-auth

	Pipeline
	Authentication Pipeline

	Disconnection Pipeline

	Partial Pipeline

	Email validation

	Extending the Pipeline

	Strategies
	Description

	Implementing a new Strategy

	Storage
	Social User

	Nonce

	Association

	Validation code

	Storage interface

	SQLAlchemy and Django mixins

	Models Examples

	Exceptions

	Backends
	Adding new backend support

	Supported backends

	Beginners Guide
	Understanding PSA URLs

	Understanding Backends

	Understanding the Pipeline

	Interrupting the Pipeline (and communicating with views)

	Disconnect and Logging Out

	Testing python-social-auth
	Installing dependencies

	Tox

	Pending

	Use Cases
	Return the user to the original page

	Pass custom GET/POST parameters and retrieve them on authentication

	Retrieve Google+ Friends

	Associate users by email

	Signup by OAuth access_token

	Multiple scopes per provider

	Enable a user to choose a username from his World of Warcraft characters

	Re-prompt Google OAuth2 users to refresh the refresh_token

	Thanks

	Copyrights and Licence

Indices and Tables

	Index

	Module Index

	Search Page

Introduction

Python Social Auth aims to be an easy to setup social authentication and
authorization mechanism for Python projects supporting protocols like OAuth [http://oauth.net/] (1
and 2), OpenId [http://openid.net/] and others.

Features

This application provides user registration and login using social sites
credentials, here are some features, probably not a full list yet.

Supported frameworks

Multiple frameworks support:

	Django [https://github.com/python-social-auth/social-app-django]

	Flask [https://github.com/python-social-auth/social-app-flask]

	Pyramid [http://www.pylonsproject.org/projects/pyramid/about]

	Webpy [https://github.com/python-social-auth/social-app-webpy]

	Tornado [http://www.tornadoweb.org/]

More frameworks can be added easily (and should be even easier in the future
once the code matures).

Auth providers

Several supported service by simple backends definition (easy to add new ones
or extend current one):

	Angel [https://angel.co] OAuth2

	Beats [https://www.beats.com] OAuth2

	Behance [https://www.behance.net] OAuth2

	Bitbucket [https://bitbucket.org] OAuth1

	Box [https://www.box.com] OAuth2

	Dailymotion [https://dailymotion.com] OAuth2

	Deezer [https://www.deezer.com] OAuth2

	Disqus [https://disqus.com] OAuth2

	Douban [http://www.douban.com] OAuth1 and OAuth2

	Dropbox [https://dropbox.com] OAuth1

	Evernote [https://www.evernote.com] OAuth1

	Facebook [https://www.facebook.com] OAuth2 and OAuth2 for Applications

	Fitbit [https://fitbit.com] OAuth2 and OAuth1

	Flickr [http://www.flickr.com] OAuth1

	Foursquare [https://foursquare.com] OAuth2

	Google App Engine [https://developers.google.com/appengine/] Auth

	Github [https://github.com] OAuth2

	Google [http://google.com] OAuth1, OAuth2 and OpenId

	Instagram [https://instagram.com] OAuth2

	Kakao [https://kakao.com] OAuth2

	Linkedin [https://www.linkedin.com] OAuth1

	Live [https://www.live.com] OAuth2

	Livejournal [http://livejournal.com] OpenId

	Mailru [https://mail.ru] OAuth2

	MineID [https://www.mineid.org] OAuth2

	Mixcloud [https://www.mixcloud.com] OAuth2

	Mozilla Persona [http://www.mozilla.org/persona/]

	NaszaKlasa [https://developers.nk.pl/] OAuth2

	NGPVAN ActionID [http://developers.ngpvan.com/action-id] OpenId

	Odnoklassniki [http://www.odnoklassniki.ru] OAuth2 and Application Auth

	OpenId [http://openid.net/]

	Podio [https://podio.com] OAuth2

	Pinterest [https://www.pinterest.com] OAuth2

	Rdio [https://www.rdio.com] OAuth1 and OAuth2

	Readability [http://www.readability.com/] OAuth1

	Shopify [http://shopify.com] OAuth2

	Skyrock [https://skyrock.com] OAuth1

	Soundcloud [https://soundcloud.com] OAuth2

	Spotify [https://www.spotify.com] OAuth2

	ThisIsMyJam [https://thisismyjam.com] OAuth1

	Stackoverflow [http://stackoverflow.com/] OAuth2

	Steam [http://steamcommunity.com/] OpenId

	Stocktwits [https://stocktwits.com] OAuth2

	Stripe [https://stripe.com] OAuth2

	Tripit [https://www.tripit.com] OAuth1

	Tumblr [http://www.tumblr.com/] OAuth1

	Twilio [https://www.twilio.com] Auth

	Twitch [http://www.twitch.tv/] OAuth2

	Twitter [http://twitter.com] OAuth1

	Upwork [https://www.upwork.com] OAuth1

	Vimeo [https://vimeo.com/] OAuth1

	VK.com [http://vk.com] OpenAPI, OAuth2 and OAuth2 for Applications

	Weibo [http://weibo.com] OAuth2

	Wunderlist [http://wunderlist.com] OAuth2

	Xing [https://www.xing.com] OAuth1

	Yahoo [http://yahoo.com] OpenId and OAuth1

	Yammer [https://www.yammer.com] OAuth2

	Yandex [https://yandex.ru] OAuth1, OAuth2 and OpenId

User data

Basic user data population, to allow custom fields values from providers
response.

Social accounts association

Multiple social accounts can be associated to a single user.

Authentication and disconnection processing

Extensible pipeline to handle authentication, association and disconnection
mechanism in ways that suits your project. Check Authentication Pipeline
section.

Installation

python-social-auth [https://github.com/python-social-auth] is very modular library looking to provide the
basics tools to implement social authentication / authorization in
Python projects. For that reason, the project is split in smaller
components that focus on providing a simpler functionality. Some
components are:

	social-auth-core [https://github.com/python-social-auth/social-core]
Core library that the rest depends on, this contains the basic
functionality to stablish an authentication/authorization flow with
the diferent supported providers.

	social-auth-storage-sqlalchemy [https://github.com/python-social-auth/social-storage-sqlalchemy], social-auth-storage-peewee [https://github.com/python-social-auth/social-storage-peewee], social-auth-storage-mongoengine [https://github.com/python-social-auth/social-storage-mongoengine]
Different storage solutions that can be reused accross the supported
frameworks or newer implementations.

	social-auth-app-django [https://github.com/python-social-auth/social-app-django], social-auth-app-django-mongoengine [https://github.com/python-social-auth/social-app-django-mongoengine]
Django framework integration

	social-auth-app-flask [https://github.com/python-social-auth/social-app-flask], social-auth-app-flask-sqlalchemy [https://github.com/python-social-auth/social-app-flask-sqlalchemy], social-auth-app-flask-mongoengine [https://github.com/python-social-auth/social-app-flask-mongoengine], social-auth-app-flask-peewee [https://github.com/python-social-auth/social-app-flask-peewee]
Flask framework integration

	social-auth-app-pyramid [https://github.com/python-social-auth/social-app-pyramid]
Pyramid framework integration

	social-auth-app-cherrypy [https://github.com/python-social-auth/social-app-cherrypy]
Cherrypy framework integration

	social-auth-app-tornado [https://github.com/python-social-auth/social-app-tornado]
Tornado framework integration

	social-auth-app-webpy [https://github.com/python-social-auth/social-app-webpy]
Webpy framework integration

Dependencies

Dependencies are properly defined in the requirements files, the
setup.py script will determine the environment where it’s
installed and sort between Python2 or Python3 packages if
needed. There are some extras defined to install the corresponding
dependencies since they require to build extensions that, unless used,
are undesired.

	OpenIdConnect [http://openid.net/connect/] support requires the use of the openidconnect extra.

	SAML [https://www.onelogin.com/saml] support requires the use of saml extra.

There’s also the all extra that will install all the extra options.

Several backends demands application registration on their
corresponding sites and other dependencies like sqlalchemy [http://www.sqlalchemy.org/] on Flask
and Webpy.

Get a copy

From pypi [http://pypi.python.org/pypi/python-social-auth/]:

$ pip install social-auth-<component>

Or:

$ easy_install social-auth-<component>

Or:

$ cd social-auth-<component>
$ sudo python setup.py install

Using the extras options

To enable any of the extras options to bring the dependencines for
OpenIdConnect [http://openid.net/connect/], or SAML [https://www.onelogin.com/saml], or both:

$ pip install "social-auth-core[openidconnect]"
$ pip install "social-auth-core[saml]"
$ pip install "social-auth-core[all]"

Configuration

All the apps share the settings names, some settings for Django framework are
special (like AUTHENTICATION_BACKENDS).

Below there’s a main settings document detailing each configuration and its
purpose, plus sections detailed for each framework and their particularities.

Support for more frameworks will be added in the future, pull-requests are very
welcome.

Contents:

	Configuration
	Application setup

	Settings name

	Keys and secrets

	Authentication backends

	URLs options

	User model

	Tweaking some fields length

	Username generation

	Extra arguments on auth processes

	Processing redirects and urlopen

	Whitelists

	Miscellaneous settings

	Account disconnection

	Django Framework
	Installing

	Register the application

	Database

	Authentication backends

	URLs entries

	Templates

	Template Context Processors

	ORMs

	Exceptions Middleware

	Django Admin

	Flask Framework
	Dependencies

	Installing

	Enabling the application

	Models Setup

	User model reference

	Global user

	Flask-Login

	Remembering sessions

	Exceptions handling

	Pyramid Framework
	Dependencies

	Installing

	Enabling the application

	Models Setup

	User model reference

	Global user

	User login

	Social auth in templates context

	CherryPy Framework
	Dependencies

	Installing

	Enabling the application

	Models Setup

	Login mechanism

	Webpy Framework
	Dependencies

	Installing

	Configuration

	URLs

	Session

	User model

	Porting from django-social-auth
	Installed apps

	URLs

	Porting settings

	Authentication backends

	Session

Configuration

Application setup

Once the application is installed (check Installation) define the following
settings to enable the application behavior. Also check the sections dedicated
to each framework for detailed instructions.

Settings name

Almost all settings are prefixed with SOCIAL_AUTH_, there are some
exceptions for Django framework like AUTHENTICATION_BACKENDS.

All settings can be defined per-backend by adding the backend name to the
setting name like SOCIAL_AUTH_TWITTER_LOGIN_URL. Settings discovery is done
by reducing the name starting with backend setting, then app setting and
finally global setting, for example:

SOCIAL_AUTH_TWITTER_LOGIN_URL
SOCIAL_AUTH_LOGIN_URL
LOGIN_URL

The backend name is generated from the name attribute from the backend
class by uppercasing it and replacing - with _.

Keys and secrets

	Setup needed OAuth keys (see OAuth [http://oauth.net/] section for details):

SOCIAL_AUTH_TWITTER_KEY = 'foobar'
SOCIAL_AUTH_TWITTER_SECRET = 'bazqux'

OpenId backends don’t require keys usually, but some need some API Key to
call any API on the provider. Check Backends sections for details.

Authentication backends

Register the backends you plan to use, on Django framework use the usual
AUTHENTICATION_BACKENDS settings, for others, define
SOCIAL_AUTH_AUTHENTICATION_BACKENDS:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 'social_core.backends.open_id.OpenIdAuth',
 'social_core.backends.google.GoogleOpenId',
 'social_core.backends.google.GoogleOAuth2',
 'social_core.backends.google.GoogleOAuth',
 'social_core.backends.twitter.TwitterOAuth',
 'social_core.backends.yahoo.YahooOpenId',
 ...
)

URLs options

These URLs are used on different steps of the auth process, some for successful
results and others for error situations.

	SOCIAL_AUTH_LOGIN_REDIRECT_URL = '/logged-in/'

	Used to redirect the user once the auth process ended successfully. The
value of ?next=/foo is used if it was present

	SOCIAL_AUTH_LOGIN_ERROR_URL = '/login-error/'

	URL where the user will be redirected in case of an error

	SOCIAL_AUTH_LOGIN_URL = '/login-url/'

	Is used as a fallback for LOGIN_ERROR_URL

	SOCIAL_AUTH_NEW_USER_REDIRECT_URL = '/new-users-redirect-url/'

	Used to redirect new registered users, will be used in place of
SOCIAL_AUTH_LOGIN_REDIRECT_URL if defined. Note that ?next=/foo is appended if present,
if you want new users to go to next, you’ll need to do it yourself.

	SOCIAL_AUTH_NEW_ASSOCIATION_REDIRECT_URL = '/new-association-redirect-url/'

	Like SOCIAL_AUTH_NEW_USER_REDIRECT_URL but for new associated accounts
(user is already logged in). Used in place of SOCIAL_AUTH_LOGIN_REDIRECT_URL

	SOCIAL_AUTH_DISCONNECT_REDIRECT_URL = '/account-disconnected-redirect-url/'

	The user will be redirected to this URL when a social account is
disconnected

	SOCIAL_AUTH_INACTIVE_USER_URL = '/inactive-user/'

	Inactive users can be redirected to this URL when trying to authenticate.

Successful URLs will default to SOCIAL_AUTH_LOGIN_URL while error URLs will
fallback to SOCIAL_AUTH_LOGIN_ERROR_URL.

User model

UserSocialAuth instances keep a reference to the User model of your
project, since this is not known, the User model must be configured by
a setting:

SOCIAL_AUTH_USER_MODEL = 'foo.bar.User'

User model must have a username and email field, these are
required.

Also an is_authenticated and is_active boolean flags are recommended,
these can be methods if necessary (must return True or False). If the
model lacks them a True value is assumed.

Tweaking some fields length

Some databases impose limitations on index columns (like MySQL InnoDB). These
limitations won’t play nice on some UserSocialAuth fields. To avoid such
errors, define some of the following settings.

	SOCIAL_AUTH_UID_LENGTH = <int>

	Used to define the max length of the field uid. A value of 223 should work
when using MySQL InnoDB which impose a 767 bytes limit (assuming UTF-8
encoding).

	SOCIAL_AUTH_NONCE_SERVER_URL_LENGTH = <int>

	Nonce model has a unique constraint over ('server_url', 'timestamp',
'salt'), salt has a max length of 40, so server_url length must be
tweaked using this setting.

	SOCIAL_AUTH_ASSOCIATION_SERVER_URL_LENGTH = <int> or SOCIAL_AUTH_ASSOCIATION_HANDLE_LENGTH = <int>

	Association model has a unique constraint over ('server_url',
'handle'), both fields lengths can be tweaked by these settings.

Username generation

Some providers return a username, others just an ID or email or first and last
names. The application tries to build a meaningful username when possible but
defaults to generating one if needed.

A UUID is appended to usernames in case of collisions. Here are some settings
to control username generation.

	SOCIAL_AUTH_UUID_LENGTH = 16

	This controls the length of the UUID appended to usernames.

	SOCIAL_AUTH_USERNAME_IS_FULL_EMAIL = True

	If you want to use the full email address as the username, define this
setting.

	SOCIAL_AUTH_SLUGIFY_USERNAMES = False

	For those that prefer slugged usernames, the get_username pipeline can
apply a slug transformation (code borrowed from Django project) by defining
this setting to True. The feature is disabled by default to to not
force this option to all projects.

	SOCIAL_AUTH_CLEAN_USERNAMES = True

	By default a set of regular expressions [https://github.com/python-social-auth/social-core/blob/master/social_core/storage.py#L18-L19] are applied over
usernames to clean them from usual undesired characters like
spaces. Set this setting to False to disable this behavior.

Extra arguments on auth processes

Some providers accept particular GET parameters that produce different results
during the auth process, usually used to show different dialog types (mobile
version, etc).

You can send extra parameters on auth process by defining settings per backend,
example to request Facebook to show Mobile authorization page, define:

FACEBOOK_AUTH_EXTRA_ARGUMENTS = {'display': 'touch'}

For other providers, just define settings in the form:

SOCIAL_AUTH_<uppercase backend name>_AUTH_EXTRA_ARGUMENTS = {...}

Also, you can send extra parameters on request token process by defining
settings in the same way explained above but with this other suffix:

SOCIAL_AUTH_<uppercase backend name>_REQUEST_TOKEN_EXTRA_ARGUMENTS = {...}

Basic information is requested to the different providers in order to create
a coherent user instance (with first and last name, email and full name), this
could be too intrusive for some sites that want to ask users the minimum data
possible. It’s possible to override the default values requested by defining
any of the following settings, for Open Id providers:

SOCIAL_AUTH_<BACKEND_NAME>_IGNORE_DEFAULT_AX_ATTRS = True
SOCIAL_AUTH_<BACKEND_NAME>_AX_SCHEMA_ATTRS = [
 (schema, alias)
]

For OAuth backends:

SOCIAL_AUTH_<BACKEND_NAME>_IGNORE_DEFAULT_SCOPE = True
SOCIAL_AUTH_<BACKEND_NAME>_SCOPE = [
 ...
]

Processing redirects and urlopen

The application issues several redirects and API calls. The following settings
allow some tweaks to the behavior of these.

	SOCIAL_AUTH_SANITIZE_REDIRECTS = False

	The auth process finishes with a redirect, by default it’s done to the
value of SOCIAL_AUTH_LOGIN_REDIRECT_URL but can be overridden with
next GET argument. If this setting is True, this application will
vary the domain of the final URL and only redirect to it if it’s on the
same domain.

	SOCIAL_AUTH_REDIRECT_IS_HTTPS = False

	On projects behind a reverse proxy that uses HTTPS, the redirect URIs
can have the wrong schema (http:// instead of https://) if
the request lacks the appropriate headers, which might cause errors during
the auth process. To force HTTPS in the final URIs set this setting to
True

	SOCIAL_AUTH_URLOPEN_TIMEOUT = 30

	Any urllib2.urlopen call will be performed with the default timeout
value, to change it without affecting the global socket timeout define this
setting (the value specifies timeout seconds).

urllib2.urlopen uses socket.getdefaulttimeout() value by default, so
setting socket.setdefaulttimeout(...) will affect urlopen when this
setting is not defined, otherwise this setting takes precedence. Also this
might affect other places in Django.

timeout argument was introduced in python 2.6 according to urllib2
documentation [http://docs.python.org/library/urllib2.html#urllib2.urlopen]

Whitelists

Registration can be limited to a set of users identified by their email
address or domain name. To white-list just set any of these settings:

	SOCIAL_AUTH_<BACKEND_NAME>_WHITELISTED_DOMAINS = ['foo.com', 'bar.com']

	Supply a list of domain names to be white-listed. Any user with an email
address on any of the allowed domains will login successfully, otherwise
AuthForbidden is raised.

	SOCIAL_AUTH_<BACKEND_NAME>_WHITELISTED_EMAILS = ['me@foo.com', 'you@bar.com']

	Supply a list of email addresses to be white-listed. Any user with an email
address in this list will login successfully, otherwise AuthForbidden
is raised.

Miscellaneous settings

	SOCIAL_AUTH_PROTECTED_USER_FIELDS = ['email',]

	During the pipeline process a dict named details will be populated
with the needed values to create the user instance, but it’s also used to
update the user instance. Any value in it will be checked as an attribute
in the user instance (first by doing hasattr(user, name)). Usually
there are attributes that cannot be updated (like username, id,
email, etc.), those fields need to be protect. Set any field name that
requires protection in this setting, and it won’t be updated.

	SOCIAL_AUTH_SESSION_EXPIRATION = False

	By default, user session expiration time will be set by your web
framework (in Django, for example, it is set with
SESSION_COOKIE_AGE [https://docs.djangoproject.com/en/1.7/ref/settings/#std:setting-SESSION_COOKIE_AGE]). Some providers return the time that the
access token will live, which is stored in UserSocialAuth.extra_data
under the key expires. Changing this setting to True will override your
web framework’s session length setting and set user session lengths to
match the expires value from the auth provider.

	SOCIAL_AUTH_OPENID_PAPE_MAX_AUTH_AGE = <int value>

	Enable OpenID PAPE [http://openid.net/specs/openid-provider-authentication-policy-extension-1_0.html] extension support by defining this setting.

	SOCIAL_AUTH_FIELDS_STORED_IN_SESSION = ['foo',]

	If you want to store extra parameters from POST or GET in session, like it
was made for next parameter, define this setting with the parameter
names.

In this case foo field’s value will be stored when user follows this
link

	SOCIAL_AUTH_PASSWORDLESS = False

	When this setting is True and social_core.pipeline.mail.send_validation
is enabled, it allows the implementation of a passwordless authentication
mechanism [https://medium.com/@ninjudd/passwords-are-obsolete-9ed56d483eb]. Example of this implementation can be found at
psa-passwordless [https://github.com/omab/psa-passwordless].

	SOCIAL_AUTH_USER_AGENT = None

	Define the User-Agent header value sent to on every request done
to the service provider, used when combined with a backend that
sets the SEND_USER_AGENT property to True. Default value is
the string social-auth-<version>.

Account disconnection

Disconnect is an side-effect operation and should be done by POST method only,
some CSRF protection is encouraged (and enforced on Django app). Ensure that
any call to /disconnect/<backend>/ or /disconnect/<backend>/<id>/ is done
using POST.

Django Framework

Django framework has a little more support since this application was derived
from django-social-auth [https://github.com/omab/django-social-auth]. Here are some details on configuring this
application on Django.

Installing

From pypi [http://pypi.python.org/pypi/social-auth-app-django/]:

$ pip install social-auth-app-django

And for MongoEngine [http://mongoengine.org] ORM:

$ pip install social-auth-app-django-mongoengine

Register the application

The Django built-in app [https://github.com/python-social-auth/social-app-django] comes with two ORMs, one for default Django ORM and
another for MongoEngine [http://mongoengine.org] ORM.

Add the application to INSTALLED_APPS setting, for default ORM:

INSTALLED_APPS = (
 ...
 'social_django',
 ...
)

And for MongoEngine [http://mongoengine.org] ORM:

INSTALLED_APPS = (
 ...
 'social_django_mongoengine',
 ...
)

Also ensure to define the MongoEngine [http://mongoengine.org] storage setting:

SOCIAL_AUTH_STORAGE = 'social_django_mongoengine.models.DjangoStorage'

Database

(For Django 1.7 and higher) sync database to create needed models:

./manage.py migrate

Authentication backends

Add desired authentication backends to Django’s AUTHENTICATION_BACKENDS [http://docs.djangoproject.com/en/dev/ref/settings/?from=olddocs#authentication-backends]
setting:

AUTHENTICATION_BACKENDS = (
 'social_core.backends.open_id.OpenIdAuth',
 'social_core.backends.google.GoogleOpenId',
 'social_core.backends.google.GoogleOAuth2',
 'social_core.backends.google.GoogleOAuth',
 'social_core.backends.twitter.TwitterOAuth',
 'social_core.backends.yahoo.YahooOpenId',
 ...
 'django.contrib.auth.backends.ModelBackend',
)

Take into account that backends must be defined in AUTHENTICATION_BACKENDS [http://docs.djangoproject.com/en/dev/ref/settings/?from=olddocs#authentication-backends]
or Django won’t pick them when trying to authenticate the user.

Don’t miss django.contrib.auth.backends.ModelBackend if using django.contrib.auth
application or users won’t be able to login by username / password method.

URLs entries

Add URLs entries:

urlpatterns = patterns('',
 ...
 url('', include('social_django.urls', namespace='social'))
 ...
)

In case you need a custom namespace, this setting is also needed:

SOCIAL_AUTH_URL_NAMESPACE = 'social'

Templates

Example of google-oauth2 backend usage in template:

Google+

Template Context Processors

There’s a context processor that will add backends and associations data to
template context:

TEMPLATE_CONTEXT_PROCESSORS = (
 ...
 'social_django.context_processors.backends',
 'social_django.context_processors.login_redirect',
 ...
)

backends context processor will load a backends key in the context with
three entries on it:

	associated

	It’s a list of UserSocialAuth instances related with the currently
logged in user. Will be empty if there’s no current user.

	not_associated

	A list of available backend names not associated with the current user yet.
If there’s no user logged in, it will be a list of all available backends.

	backends

	A list of all available backend names.

ORMs

As detailed above the built-in Django application supports default ORM and
MongoEngine [http://mongoengine.org] ORM.

When using MongoEngine [http://mongoengine.org] make sure you’ve followed the instructions for
MongoEngine Django integration [http://mongoengine-odm.readthedocs.org/en/latest/django.html], as you’re now utilizing that user model. The
MongoEngine_ backend was developed and tested with version 0.6.10 of
MongoEngine_.

Alternate storage models implementations currently follow a tight pattern of
models that behave near or identical to Django ORM models. It is currently
not decoupled from this pattern by any abstraction layer. If you would like
to implement your own alternate, please see the social_django.models and
social_django_mongoengine.models modules for guidance.

Exceptions Middleware

A base middleware is provided that handles SocialAuthBaseException by
providing a message to the user via the Django messages framework, and then
responding with a redirect to a URL defined in one of the middleware methods.

The middleware is at social_django.middleware.SocialAuthExceptionMiddleware.
Any method can be overridden, but for simplicity these two are recommended:

get_message(request, exception)
get_redirect_uri(request, exception)

By default, the message is the exception message and the URL for the redirect
is the location specified by the LOGIN_ERROR_URL setting.

If a valid backend was detected by strategy() decorator, it will be
available at request.strategy.backend and process_exception() will
use it to build a backend-dependent redirect URL but fallback to default if not
defined.

Exception processing is disabled if any of this settings is defined with a
True value:

<backend name>_SOCIAL_AUTH_RAISE_EXCEPTIONS = True
SOCIAL_AUTH_RAISE_EXCEPTIONS = True
RAISE_EXCEPTIONS = True
DEBUG = True

The redirect destination will get two GET parameters:

	message = ''

	Message from the exception raised, in some cases it’s the message returned
by the provider during the auth process.

	backend = ''

	Backend name that was used, if it was a valid backend.

The middleware will attempt to use the Django built-in messages
application to store the exception message, and tag it with
social-auth and the backend name. If the application is not enabled,
or a MessageFailure error happens, the app will default to the URL
format described above.

Django Admin

The default application (not the MongoEngine [http://mongoengine.org] one) contains an admin.py
module that will be auto-discovered by the usual mechanism.

But, by the nature of the application which depends on the existence of a user
model, it’s easy to fall in a recursive import ordering making the application
fail to load. This happens because the admin module will build a set of fields
to populate the search_fields property to search for related users in the
administration UI, but this requires the user model to be retrieved which might
not be defined at that time.

To avoid this issue define the following setting to circumvent the import
error:

SOCIAL_AUTH_ADMIN_USER_SEARCH_FIELDS = ['field1', 'field2']

For example:

SOCIAL_AUTH_ADMIN_USER_SEARCH_FIELDS = ['username', 'first_name', 'email']

The fields listed must be user models fields.

It’s also possible to define more search fields, not directly related
to the user model by definig the following setting:

SOCIAL_AUTH_ADMIN_SEARCH_FIELDS = ['field1', 'field2']

Flask Framework

Flask reusable applications are tricky (or I’m not capable enough). Here are
details on how to enable this application on Flask.

Dependencies

The Flask app does not depend on any storage backend by
default. There’s support for SQLAlchemy [http://www.sqlalchemy.org/], MongoEngine [http://mongoengine.org] and Peewee [http://docs.peewee-orm.com/en/latest/].

Installing

Install the flask core from pypi [http://pypi.python.org/pypi/social-auth-app-flask/]:

$ pip install social-auth-app-flask

Install any of the storage solutions:

$ pip install social-auth-app-flask-sqlalchemy
$ pip install social-auth-app-flask-mongoengine
$ pip install social-auth-app-flask-peewee

Enabling the application

The applications define a Flask Blueprint [http://flask.pocoo.org/docs/blueprints/], which needs to be registered once
the Flask app is configured by:

from social_flask.routes import social_auth

app.register_blueprint(social_auth)

For MongoEngine [http://mongoengine.org] you need this setting:

SOCIAL_AUTH_STORAGE = 'social_flask_mongoengine.models.FlaskStorage'

For Peewee [http://docs.peewee-orm.com/en/latest/] you need this setting:

SOCIAL_AUTH_STORAGE = 'social_flask_peewee.models.FlaskStorage'

Models Setup

At the moment the models for python-social-auth [https://github.com/python-social-auth] are defined inside a function
because they need the reference to the current db session and the User model
used on your project (check User model reference below). Once the Flask app
and the database are defined, call init_social to register the models:

from social_flask_sqlalchemy.models import init_social

init_social(app, session)

For MongoEngine [http://mongoengine.org]:

from social_flask_mongoengine.models import init_social

init_social(app, session)

For Peewee [http://docs.peewee-orm.com/en/latest/]:

from social_flask_peewee.models import init_social

init_social(app, session)

So far I wasn’t able to find another way to define the models on another way
rather than making it as a side-effect of calling this function since the
database is not available and current_app cannot be used on init time, just
run time.

User model reference

The application keeps a reference to the User model used by your project,
define it by using this setting:

SOCIAL_AUTH_USER_MODEL = 'foobar.models.User'

The value must be the import path to the User model.

Global user

The application expects the current logged in user accesible at g.user,
define a handler like this to ensure that:

@app.before_request
def global_user():
 g.user = get_current_logged_in_user

Flask-Login

The application works quite well with Flask-Login [https://github.com/maxcountryman/flask-login], ensure to have some similar
handlers to these:

@login_manager.user_loader
def load_user(userid):
 try:
 return User.query.get(int(userid))
 except (TypeError, ValueError):
 pass

@app.before_request
def global_user():
 g.user = login.current_user

Make current user available on templates
@app.context_processor
def inject_user():
 try:
 return {'user': g.user}
 except AttributeError:
 return {'user': None}

Remembering sessions

The users session can be remembered when specified on login. The common
implementation for this feature is to pass a parameter from the login form
(remember_me, keep, etc), to flag the action. Flask-Login [https://github.com/maxcountryman/flask-login] will mark
the session as persistent if told so.

python-social-auth [https://github.com/python-social-auth] will check for a given name (keep) by default, but
since providers won’t pass parameters back to the application, the value must
be persisted in the session before the authentication process happens.

So, the following setting is required for this to work:

SOCIAL_AUTH_FIELDS_STORED_IN_SESSION = ['keep']

It’s possible to override the default name with this setting:

SOCIAL_AUTH_REMEMBER_SESSION_NAME = 'remember_me'

Don’t use the value remember since that will clash with Flask-Login [https://github.com/maxcountryman/flask-login] which
pops the value from the session.

Then just pass the parameter keep=1 as a GET or POST parameter.

Exceptions handling

The Django application has a middleware (that fits in the framework
architecture) to facilitate the different exceptions [https://github.com/python-social-auth/social-core/blob/master/social_core/exceptions.py] handling raised by
python-social-auth [https://github.com/python-social-auth]. The same can be accomplished (even on a simpler way) in
Flask by defining an errorhandler [http://flask.pocoo.org/docs/api/#flask.Flask.errorhandler]. For example the next code will redirect any
social-auth exception to a /socialerror URL:

from social_core.exceptions import SocialAuthBaseException

@app.errorhandler(500)
def error_handler(error):
 if isinstance(error, SocialAuthBaseException):
 return redirect('/socialerror')

Be sure to set your debug and test flags to False when testing this on your
development environment, otherwise the exception will be raised and error
handlers won’t be called.

Pyramid Framework

Pyramid [http://www.pylonsproject.org/projects/pyramid/about] reusable applications are tricky (or I’m not capable enough). Here are
details on how to enable this application on Pyramid.

Dependencies

The Pyramid app [https://github.com/python-social-auth/social-app-pyramid] depends on sqlalchemy [http://www.sqlalchemy.org/], there’s no support for others
ORMs yet but pull-requests are welcome.

Installing

From pypi [http://pypi.python.org/pypi/social-auth-app-pyramid/]:

$ pip install social-auth-app-pyramid

Enabling the application

The application can be scanned by Configurator.scan(), also it defines an
includeme() in the __init__.py file which will add the needed routes to
your application configuration. To scan it just add:

config.include('social_pyramid')
config.scan('social_pyramid')

Models Setup

At the moment the models for python-social-auth [https://github.com/python-social-auth] are defined inside a function
because they need the reference to the current DB instance and the User model
used on your project (check User model reference below). Once the Pyramid
application configuration and database are defined, call init_social to
register the models:

from social_pyramid.models import init_social

init_social(config, Base, DBSession)

So far I wasn’t able to find another way to define the models on another way
rather than making it as a side-effect of calling this function since the
database is not available and current_app cannot be used on initialization
time, just run time.

User model reference

The application keeps a reference to the User model used by your project,
define it by using this setting:

SOCIAL_AUTH_USER_MODEL = 'foobar.models.User'

The value must be the import path to the User model.

Global user

The application expects the current logged in user accessible at request.user,
the example application ensures that with this hander:

def get_user(request):
 user_id = request.session.get('user_id')
 if user_id:
 user = DBSession.query(User)\
 .filter(User.id == user_id)\
 .first()
 else:
 user = None
 return user

The handler is added to the configuration doing:

config.add_request_method('example.auth.get_user', 'user', reify=True)

This is just a simple example, probably your project does it in a better way.

User login

Since the application doesn’t make any assumption on how you are going to login
the users, you need to specify it. In order to do that, define these settings:

SOCIAL_AUTH_LOGIN_FUNCTION = 'example.auth.login_user'
SOCIAL_AUTH_LOGGEDIN_FUNCTION = 'example.auth.login_required'

The first one must accept the strategy used and the user instance that was
created or retrieved from the database, there you can set the user id in the
session or cookies or whatever place used later to retrieve the id again and
load the user from the database (check the snippet above in Global User).

The second one is used to ensure that there’s a user logged in when calling the
disconnect view. It must accept a User instance and return True or
Flase.

Check the auth.py [https://github.com/python-social-auth/social-examples/blob/master/example-pyramid/example/auth.py] in the example application for details on how it’s done
there.

Social auth in templates context

To access the social instances related to a user in the template context, you
can do so by accessing the social_auth attribute in the user instance:

<li tal:repeat="social request.user.social_auth">${social.provider}

Also you can add the backends (associated and not associated to a user) by
enabling this context function in your project:

from pyramid.events import subscriber, BeforeRender
from social_pyramid.utils import backends

@subscriber(BeforeRender)
def add_social(event):
 request = event['request']
 event.update(backends(request, request.user))

That will load a dict with entries:

{
 'associated': [...],
 'not_associated': [...],
 'backends': [...]
}

The associated key will have all the associated UserSocialAuth
instances related to the given user. not_associated will have the backends
names not associated and backends will have all the enabled backends names.

CherryPy Framework

CherryPy framework is supported, it works but I’m sure there’s room for
improvements. The implementation uses SQLAlchemy as ORM and expects some values
accessible on cherrypy.request for it to work.

At the moment the configuration is expected on cherrypy.config but ideally
it should be an application configuration instead.

Expected values are:

	cherrypy.request.user

	Current logged in user, load it in your application on a before_handler
handler.

	cherrypy.request.db

	Current database session, again, load it in your application on
a before_handler.

Dependencies

The CherryPy application depends on sqlalchemy [http://www.sqlalchemy.org/], there’s no support for
others ORMs yet.

Installing

From pypi [http://pypi.python.org/pypi/social-auth-app-cherrypy/]:

$ pip install social-auth-app-cherrypy

Enabling the application

The application is defined on social_cherrypy.views.CherryPyPSAViews,
register it in the preferred way for your project.

Check the rest of the docs for the other settings like enabling authentication
backends and backends keys.

Models Setup

The models are located in social_cherrypy.models. A reference to
your User model is required to be defined in the project settings, it
should be an import path, for example:

cherrypy.config.update({
 'SOCIAL_AUTH_USER_MODEL': 'models.User'
})

Login mechanism

By default the application sets the session value user_id, this is a simple
solution and it should be improved, if you want to provider your own login
mechanism you can do it by defining the SOCIAL_AUTH_LOGIN_METHOD setting,
it should be an import path to a callable, like this:

SOCIAL_AUTH_USER_MODEL = 'app.login_user'

And an example of this function:

def login_user(strategy, user):
 strategy.session_set('user_id', user.id)

Then, ensure to load the user in your application at cherrypy.request.user,
for example:

def load_user():
 user_id = cherrypy.session.get('user_id')
 if user_id:
 cherrypy.request.user = cherrypy.request.db.query(User).get(user_id)
 else:
 cherrypy.request.user = None

cherrypy.tools.authenticate = cherrypy.Tool('before_handler', load_user)

Webpy Framework

Webpy [http://webpy.org/] framework is easy to setup, once that python-social-auth [https://github.com/python-social-auth] is installed
or accessible in the PYTHONPATH, just add the needed configurations to make
it run.

Dependencies

The Webpy app depends on sqlalchemy [http://www.sqlalchemy.org/], there’s no support for others
ORMs yet but pull-requests are welcome.

Installing

From pypi [http://pypi.python.org/pypi/social-auth-app-webpy/]:

$ pip install social-auth-app-webpy

Configuration

Add the needed settings into web.config store. Settings are prefixed with
SOCIAL_AUTH_ but there’s a helper for it:

from social_core.utils import setting_name

web.config[setting_name('USER_MODEL')] = 'models.User'
web.config[setting_name('LOGIN_REDIRECT_URL')] = '/done/'
web.config[setting_name('AUTHENTICATION_BACKENDS')] = (
 'social_core.backends.google.GoogleOAuth2',
 ...
)

Add all the settings needed for the app (check Configuration section for
details).

URLs

Add the social application into URLs:

from social_webpy import app as social_app

urls = (
 ...
 '', social_app.app_social
 ...
)

Session

python-social-auth [https://github.com/python-social-auth] depends on sessions storage to keep some essential values,
usually redirects and state parameters used to validate authentication
process on OAuth providers.

The Webpy built-in app expects the session reference to be available under
web.web_session so ensure it’s available there.

User model

Like the other apps, the User model must be defined on settings since
a reference to it is kept on UserSocialAuth instance. Define like this:

web.config[setting_name('USER_MODEL')] = 'models.User'

Where the value is the import path to the User model used on your project.

Porting from django-social-auth

Being a derivative work from django-social-auth [https://github.com/omab/django-social-auth], porting from it to
python-social-auth [https://github.com/python-social-auth] should be an easy task. Porting to others libraries usually
is a pain, I’m trying to make this as easy as possible.

Installed apps

On django-social-auth [https://github.com/omab/django-social-auth] there was a single application to add into
INSTALLED_APPS plus a setting to define which ORM to be used (default or
MongoEngine). Now the apps are split and there’s not need for that extra
setting.

When using the default ORM:

INSTALLED_APPS = (
 ...
 'social_django',
 ...
)

And when using MongoEngine:

INSTALLED_APPS = (
 ...
 'social_django_mongoengine',
 ...
)

The models table names were defined to be compatible with those used on
django-social-auth [https://github.com/omab/django-social-auth], so data is not needed to be migrated.

URLs

The URLs are namespaced, you can chose your namespace, the example app [https://github.com/python-social-auth/social-examples/blob/master/example-django/example/urls.py] uses
the social namespace. Replace the old include with:

urlpatterns = patterns('',
 ...
 url('', include('social_django.urls', namespace='social'))
 ...
)

On templates use a namespaced URL:

{% url 'social:begin' "google-oauth2" %}

Account disconnection URL would be:

{% url 'social:disconnect_individual' provider, id %}

Porting settings

All python-social-auth [https://github.com/python-social-auth] settings are prefixed with SOCIAL_AUTH_, except for
some exception on Django framework, AUTHENTICATION_BACKENDS remains the
same for obvious reasons.

All backends settings have the backend name into it, all uppercase and with
dashes replaced with underscores, take for instance Google OAuth2 backend is
named google-oauth2, any setting name related to that backend should start
with SOCIAL_AUTH_GOOGLE_OAUTH2_.

Keys and secrets are some mandatory settings needed for OAuth providers, to
keep consistency the names follow the same naming convention *_KEY for the
application key, and *_SECRET for the secret. OAuth1 backends use to have
CONSUMER in the setting name, not anymore. Following with the Google OAuth2
example:

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = '...'
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = '...'

Remember that the name of the backend is needed in the settings, and names
differ a little from backend to backend, like Facebook OAuth2 backend [https://github.com/python-social-auth/social-core/blob/master/social_core/backends/facebook.py#L17] name
is facebook. So the settings should be:

SOCIAL_AUTH_FACEBOOK_KEY = '...'
SOCIAL_AUTH_FACEBOOK_SECRET = '...'

Authentication backends

Import path for authentication backends changed a little, there’s no more
contrib module, there’s no need for it. Some backends changed the names to
have some consistency, check the backends, it should be easy to track the names
changes. Examples of the new import paths:

AUTHENTICATION_BACKENDS = (
 'social_core.backends.open_id.OpenIdAuth',
 'social_core.backends.google.GoogleOpenId',
 'social_core.backends.google.GoogleOAuth2',
 'social_core.backends.google.GoogleOAuth',
 'social_core.backends.twitter.TwitterOAuth',
 'social_core.backends.facebook.FacebookOAuth2',
)

Session

Django stores the last authentication backend used in the user session as an
import path, this can cause import troubles when porting since the old import
paths aren’t valid anymore. Some solutions to this problem are:

	Clean the session and force the users to login again in your site

	Run a migration script that will update the authentication backend session
value for each session in your database. This implies figuring out the new
import path for each backend you have configured, which is the value used in
AUTHENTICATION_BACKENDS setting.

@tomgruner [https://github.com/tomgruner] created a Gist here [https://gist.github.com/tomgruner/5ce8bb1f4c55d17b5b25] that updates the value just for Facebook
backend. A template for this script would look like this:

from django.contrib.sessions.models import Session

BACKENDS = {
 'social_auth.backends.facebook.FacebookBackend': 'social_core.backends.facebook.FacebookOAuth2'
}

for sess in Session.objects.iterator():
 session_dict = sess.get_decoded()

 if '_auth_user_backend' in session_dict.keys():
 # Change old backend import path from new backend import path
 if session_dict['_auth_user_backend'].startswith('social_auth'):
 session_dict['_auth_user_backend'] = BACKENDS[session_dict['_auth_user_backend']]
 new_sess = Session.objects.save(sess.session_key, session_dict, sess.expire_date)
 print 'New session saved {}'.format(new_sess.pk)

Pipeline

python-social-auth [https://github.com/python-social-auth] uses an extendible pipeline mechanism where developers can
introduce their functions during the authentication, association and
disconnection flows.

The functions will receive a variable set of arguments related to the current
process, common arguments are the current strategy, user (if any) and
request. It’s recommended that all the function also define an **kwargs
in the parameters to avoid errors for unexpected arguments.

Each pipeline entry can return a dict or None, any other type of return
value is treated as a response instance and returned directly to the client,
check Partial Pipeline below for details.

If a dict is returned, the value in the set will be merged into the
kwargs argument for the next pipeline entry, None is taken as if {}
was returned.

Authentication Pipeline

The final process of the authentication workflow is handled by an operations
pipeline where custom functions can be added or default items can be removed to
provide a custom behavior. The default pipeline is a mechanism that creates
user instances and gathers basic data from providers.

The default pipeline is composed by:

(
 # Get the information we can about the user and return it in a simple
 # format to create the user instance later. On some cases the details are
 # already part of the auth response from the provider, but sometimes this
 # could hit a provider API.
 'social_core.pipeline.social_auth.social_details',

 # Get the social uid from whichever service we're authing thru. The uid is
 # the unique identifier of the given user in the provider.
 'social_core.pipeline.social_auth.social_uid',

 # Verifies that the current auth process is valid within the current
 # project, this is where emails and domains whitelists are applied (if
 # defined).
 'social_core.pipeline.social_auth.auth_allowed',

 # Checks if the current social-account is already associated in the site.
 'social_core.pipeline.social_auth.social_user',

 # Make up a username for this person, appends a random string at the end if
 # there's any collision.
 'social_core.pipeline.user.get_username',

 # Send a validation email to the user to verify its email address.
 # Disabled by default.
 # 'social_core.pipeline.mail.mail_validation',

 # Associates the current social details with another user account with
 # a similar email address. Disabled by default.
 # 'social_core.pipeline.social_auth.associate_by_email',

 # Create a user account if we haven't found one yet.
 'social_core.pipeline.user.create_user',

 # Create the record that associates the social account with the user.
 'social_core.pipeline.social_auth.associate_user',

 # Populate the extra_data field in the social record with the values
 # specified by settings (and the default ones like access_token, etc).
 'social_core.pipeline.social_auth.load_extra_data',

 # Update the user record with any changed info from the auth service.
 'social_core.pipeline.user.user_details',
)

It’s possible to override it by defining the setting SOCIAL_AUTH_PIPELINE.
For example, a pipeline that won’t create users, just accept already registered
ones would look like this:

SOCIAL_AUTH_PIPELINE = (
 'social_core.pipeline.social_auth.social_details',
 'social_core.pipeline.social_auth.social_uid',
 'social_core.pipeline.social_auth.auth_allowed',
 'social_core.pipeline.social_auth.social_user',
 'social_core.pipeline.social_auth.associate_user',
 'social_core.pipeline.social_auth.load_extra_data',
 'social_core.pipeline.user.user_details',
)

Note that this assumes the user is already authenticated, and thus the user key
in the dict is populated. In cases where the authentication is purely external, a
pipeline method must be provided that populates the user key. Example:

SOCIAL_AUTH_PIPELINE = (
 'myapp.pipeline.load_user',
 'social_core.pipeline.social_auth.social_user',
 'social_core.pipeline.social_auth.associate_user',
 'social_core.pipeline.social_auth.load_extra_data',
 'social_core.pipeline.user.user_details',
)

It is also possible to define pipelines on a per backend basis by defining a setting
such as SOCIAL_AUTH_TWITTER_PIPELINE. Backend specific pipelines will override
the non specific pipelines (i.e. the default pipeline and SOCIAL_AUTH_PIPELINE).

	Each pipeline function will receive the following parameters:

	
	Current strategy (which gives access to current store, backend and request)

	User ID given by authentication provider

	User details given by authentication provider

	is_new flag (initialized as False)

	Any arguments passed to auth_complete backend method, default views
pass these arguments:
	current logged in user (if it’s logged in, otherwise None)

	current request

Disconnection Pipeline

Like the authentication pipeline, it’s possible to define a disconnection
pipeline if needed.

For example, this can be useful on sites where a user that disconnects all the
related social account is required to fill a password to ensure the
authentication process in the future. This can be accomplished by overriding
the default disconnection pipeline and setup a function that checks if the user
has a password, in case it doesn’t a redirect to a fill-your-password form can
be returned and later continue the disconnection process, take into account
that disconnection ensures the POST method by default, a simple method to
ensure this, is to make your form POST to /disconnect/ and set the needed
password in your pipeline function. Check Partial Pipeline below.

In order to override the disconnection pipeline, just define the setting:

SOCIAL_AUTH_DISCONNECT_PIPELINE = (
 # Verifies that the social association can be disconnected from the current
 # user (ensure that the user login mechanism is not compromised by this
 # disconnection).
 'social_core.pipeline.disconnect.allowed_to_disconnect',

 # Collects the social associations to disconnect.
 'social_core.pipeline.disconnect.get_entries',

 # Revoke any access_token when possible.
 'social_core.pipeline.disconnect.revoke_tokens',

 # Removes the social associations.
 'social_core.pipeline.disconnect.disconnect',
)

Backend specific disconnection pipelines can also be defined with a setting such as
SOCIAL_AUTH_TIWTTER_DISCONNECT_PIPELINE.

Partial Pipeline

It’s possible to cut the pipeline process to return to the user asking for more
data and resume the process later. To accomplish this decorate the function
that will cut the process with the @partial decorator located at
social/pipeline/partial.py.

The old social_core.pipeline.partial.save_status_to_session is now deprecated.

When it’s time to resume the process just redirect the user to /complete/<backend>/
or /disconnect/<backend>/ view. The pipeline will resume in the same
function that cut the process.

@partial and save_status_to_session stores needed data into user session
under the key partial_pipeline. To get the backend in order to redirect to
any social view, just do:

backend = session['partial_pipeline']['backend']

Check the example applications [https://github.com/python-social-auth/social-examples] to check a basic usage.

Email validation

There’s a pipeline to validate email addresses, but it relies a lot on your
project.

The pipeline is at social_core.pipeline.mail.mail_validation and it’s a partial
pipeline, it will return a redirect to a URL that you can use to tell the
users that an email validation was sent to them. If you want to mention the
email address you can get it from the session under the key email_validation_address.

In order to send the validation python-social-auth [https://github.com/python-social-auth] needs a function that will
take care of it, this function is defined by the developer with the setting
SOCIAL_AUTH_EMAIL_VALIDATION_FUNCTION. It should be an import path. This
function should take three arguments strategy, backend and code.
code is a model instance used to validate the email address, it contains
three fields:

	code = '...'

	Holds an uuid.uuid4() value and it’s the code used to identify the
validation process.

	email = '...'

	Email address trying to be validate.

	verified = True / False

	Flag marking if the email was verified or not.

You should use the code in this instance to build the link for email
validation which should go to /complete/email?verification_code=<code here>. If you are using
Django, you can do it with:

from django.core.urlresolvers import reverse
url = strategy.build_absolute_uri(
 reverse('social:complete', args=(strategy.backend_name,))
) + '?verification_code=' + code.code

On Flask:

from flask import url_for
url = url_for('social.complete', backend=strategy.backend_name,
 _external=True) + '?verification_code=' + code

This pipeline can be used globally with any backend if this setting is
defined:

SOCIAL_AUTH_FORCE_EMAIL_VALIDATION = True

Or individually by defining the setting per backend basis like
SOCIAL_AUTH_TWITTER_FORCE_EMAIL_VALIDATION = True.

Extending the Pipeline

The main purpose of the pipeline (either creation or deletion pipelines) is to
allow extensibility for developers. You can jump in the middle of it, do
changes to the data, create other models instances, ask users for extra data,
or even halt the whole process.

Extending the pipeline implies:

	Writing a function

	Locating the function in an accessible path
(accessible in the way that it can be imported)

	Overriding the default pipeline definition with one that includes
newly created function.

The part of writing the function is quite simple. However please be careful
when placing your function in the pipeline definition, because order
does matter in this case! Ordering of functions in SOCIAL_AUTH_PIPELINE
will determine the value of arguments that each function will receive.
For example, adding your function after social_core.pipeline.user.create_user
ensures that your function will get the user instance (created or already existent)
instead of a None value.

The pipeline functions will get quite a lot of arguments, ranging from the
backend in use, different model instances, server requests and provider
responses. To enumerate a few:

	strategy

	The current strategy instance.

	backend

	The current backend instance.

	uid

	User ID in the provider, this uid should identify the user in the
current provider.

	response = {} or object()

	The server user-details response, it depends on the protocol in use (and
sometimes the provider implementation of such protocol), but usually it’s
just a dict with the user profile details in such provider. Lots of
information related to the user is provided here, sometimes the scope
will increase the amount of information in this response on OAuth
providers.

	details = {}

	Basic user details generated by the backend, used to create/update the user
model details (this dict will contain values like username,
email, first_name, last_name and fullname).

	user = None

	The user instance (or None if it wasn’t created or retrieved from the
database yet).

	social = None

	This is the associated UserSocialAuth instance for the given user (or
None if it wasn’t created or retrieved from the DB yet).

Usually when writing your custom pipeline function, you just want to get some
values from the response parameter. But you can do even more, like call
other APIs endpoints to retrieve even more details about the user, store them
on some other place, etc.

Here’s an example of a simple pipeline function that will create a Profile
class instance, related to the current user. This profile will store some simple details
returned by the provider (Facebook in this example). The usual Facebook
response looks like this:

{
 'username': 'foobar',
 'access_token': 'CAAD...',
 'first_name': 'Foo',
 'last_name': 'Bar',
 'verified': True,
 'name': 'Foo Bar',
 'locale': 'en_US',
 'gender': 'male',
 'expires': '5183999',
 'email': 'foo@bar.com',
 'updated_time': '2014-01-14T15:58:35+0000',
 'link': 'https://www.facebook.com/foobar',
 'timezone': -3,
 'id': '100000126636010',
}

Let’s say we are interested in storing the user profile link, the gender and
the timezone in our Profile model:

def save_profile(backend, user, response, *args, **kwargs):
 if backend.name == 'facebook':
 profile = user.get_profile()
 if profile is None:
 profile = Profile(user_id=user.id)
 profile.gender = response.get('gender')
 profile.link = response.get('link')
 profile.timezone = response.get('timezone')
 profile.save()

Now all that’s needed is to tell python-social-auth to use our function in
the pipeline. Since the function uses user instance, we need to put it after
social_core.pipeline.user.create_user:

SOCIAL_AUTH_PIPELINE = (
 'social_core.pipeline.social_auth.social_details',
 'social_core.pipeline.social_auth.social_uid',
 'social_core.pipeline.social_auth.auth_allowed',
 'social_core.pipeline.social_auth.social_user',
 'social_core.pipeline.user.get_username',
 'social_core.pipeline.user.create_user',
 'path.to.save_profile', # <--- set the path to the function
 'social_core.pipeline.social_auth.associate_user',
 'social_core.pipeline.social_auth.load_extra_data',
 'social_core.pipeline.user.user_details',
)

So far the function we created returns None, which is taken as if {} was returned.
If you want the profile object to be available to the next function in the
pipeline, all you need to do is return {'profile': profile}.

Strategies

Different strategies are defined to encapsulate the different frameworks
capabilities under a common API to reuse as much code as possible.

Description

A strategy’s responsibility is to provide access to:

	Request data and host information and URI building

	Session access

	Project settings

	Response types (HTML and redirects)

	HTML rendering

Different frameworks implement these features on different ways, thus the need
for these interfaces.

Implementing a new Strategy

The following methods must be defined on strategies sub-classes.

Request:

def request_data(self):
 """Return current request data (POST or GET)"""
 raise NotImplementedError('Implement in subclass')

def request_host(self):
 """Return current host value"""
 raise NotImplementedError('Implement in subclass')

def build_absolute_uri(self, path=None):
 """Build absolute URI with given (optional) path"""
 raise NotImplementedError('Implement in subclass')

Session:

def session_get(self, name):
 """Return session value for given key"""
 raise NotImplementedError('Implement in subclass')

def session_set(self, name, value):
 """Set session value for given key"""
 raise NotImplementedError('Implement in subclass')

def session_pop(self, name):
 """Pop session value for given key"""
 raise NotImplementedError('Implement in subclass')

Settings:

def get_setting(self, name):
 """Return value for given setting name"""
 raise NotImplementedError('Implement in subclass')

Responses:

def html(self, content):
 """Return HTTP response with given content"""
 raise NotImplementedError('Implement in subclass')

def redirect(self, url):
 """Return a response redirect to the given URL"""
 raise NotImplementedError('Implement in subclass')

def render_html(self, tpl=None, html=None, context=None):
 """Render given template or raw html with given context"""
 raise NotImplementedError('Implement in subclass')

Storage

Different frameworks support different ORMs, Storage solves the different
interfaces moving the common API to mixins classes. These mixins are used on
apps when defining the different models used by python-social-auth.

Social User

This model associates a social account data with a user in the system, it
contains the provider name and user ID (uid) which should identify the
social account in the remote provider, plus some extra data (extra_data)
which is JSON encoded field with extra information from the provider (usually
avatars and similar).

When implementing this model, it must inherits from UserMixin [https://github.com/python-social-auth/social-core/blob/master/social_core/storage.py#L21] and extend the
needed methods:

	Username:

@classmethod
def get_username(cls, user):
 """Return the username for given user"""
 raise NotImplementedError('Implement in subclass')

@classmethod
def username_max_length(cls):
 """Return the max length for username"""
 raise NotImplementedError('Implement in subclass')

	User model:

@classmethod
def user_model(cls):
 """Return the user model"""
 raise NotImplementedError('Implement in subclass')

@classmethod
def changed(cls, user):
 """The given user instance is ready to be saved"""
 raise NotImplementedError('Implement in subclass')

@classmethod
def user_exists(cls, username):
 """
 Return True/False if a User instance exists with the given arguments.
 Arguments are directly passed to filter() manager method.
 """
 raise NotImplementedError('Implement in subclass')

@classmethod
def create_user(cls, username, email=None):
 """Create a user with given username and (optional) email"""
 raise NotImplementedError('Implement in subclass')

@classmethod
def get_user(cls, pk):
 """Return user instance for given id"""
 raise NotImplementedError('Implement in subclass')

	Social user:

@classmethod
def get_social_auth(cls, provider, uid):
 """Return UserSocialAuth for given provider and uid"""
 raise NotImplementedError('Implement in subclass')

@classmethod
def get_social_auth_for_user(cls, user):
 """Return all the UserSocialAuth instances for given user"""
 raise NotImplementedError('Implement in subclass')

@classmethod
def create_social_auth(cls, user, uid, provider):
 """Create a UserSocialAuth instance for given user"""
 raise NotImplementedError('Implement in subclass')

	Social disconnection:

@classmethod
def allowed_to_disconnect(cls, user, backend_name, association_id=None):
 """Return if it's safe to disconnect the social account for the
 given user"""
 raise NotImplementedError('Implement in subclass')

@classmethod
def disconnect(cls, name, user, association_id=None):
 """Disconnect the social account for the given user"""
 raise NotImplementedError('Implement in subclass')

Nonce

This is a helper class for OpenId mechanism, it stores a one-use number,
shouldn’t be used by the project since it’s for internal use only.

When implementing this model, it must inherits from NonceMixin [https://github.com/python-social-auth/social-core/blob/master/social_core/storage.py#L166], and override
the needed method:

@classmethod
def use(cls, server_url, timestamp, salt):
 """Create a Nonce instance"""
 raise NotImplementedError('Implement in subclass')

Association

Another OpenId helper class, it stores basic data to keep the OpenId
association. Like Nonce this is for internal use only.

When implementing this model, it must inherits from AssociationMixin [https://github.com/python-social-auth/social-core/blob/master/social_core/storage.py#L178], and
override the needed methods:

@classmethod
def store(cls, server_url, association):
 """Create an Association instance"""
 raise NotImplementedError('Implement in subclass')

@classmethod
def get(cls, *args, **kwargs):
 """Get an Association instance"""
 raise NotImplementedError('Implement in subclass')

@classmethod
def remove(cls, ids_to_delete):
 """Remove an Association instance"""
 raise NotImplementedError('Implement in subclass')

Validation code

This class is used to keep track of email validations codes following the usual
email validation mechanism of sending an email to the user with a unique code.
This model is used by the partial pipeline social_core.pipeline.mail.mail_validation.
Check the docs at Email validation in pipeline docs.

When implementing the model for your framework only one method needs to be
overridden:

@classmethod
def get_code(cls, code):
 """Return the Code instance with the given code value"""
 raise NotImplementedError('Implement in subclass')

Storage interface

There’s a helper class used by strategies to hide the real models names under
a common API, an instance of this class is used by strategies to access the
storage modules.

When implementing this class it must inherits from BaseStorage [https://github.com/python-social-auth/social-core/blob/master/social_core/storage.py#L248], add the needed
models references and implement the needed method:

class StorageImplementation(BaseStorage):
 user = UserModel
 nonce = NonceModel
 association = AssociationModel
 code = CodeModel

 @classmethod
 def is_integrity_error(cls, exception):
 """Check if given exception flags an integrity error in the DB"""
 raise NotImplementedError('Implement in subclass')

SQLAlchemy and Django mixins

Currently there are partial implementations of mixins for SQLAlchemy ORM [https://github.com/python-social-auth/social-storage-sqlalchemy/blob/master/social_sqlalchemy/storage.py] and
Django ORM [https://github.com/python-social-auth/social-app-django/blob/master/social_django/storage.py] with common code used later on current implemented applications.

Note

When using SQLAlchemy ORM [https://github.com/python-social-auth/social-storage-sqlalchemy/blob/master/social_sqlalchemy/storage.py] and ZopeTransactionExtension, it’s
recommended to use the transaction [https://pypi.python.org/pypi/transaction] application to handle them.

Models Examples

Check for current implementations for Django App [https://github.com/python-social-auth/social-app-django/blob/master/social_django/models.py], Flask App [https://github.com/python-social-auth/social-app-django/blob/master/social_flask/models.py], Pyramid
App [https://github.com/python-social-auth/social-app-pyramid/blob/master/social_pyramid/models.py], and Webpy App [https://github.com/python-social-auth/social-app-webpy/blob/master/social_webpy/models.py] for examples of implementations.

Exceptions

This set of exceptions were introduced to describe the situations a bit more
than just the ValueError usually raised.

	SocialAuthBaseException

	Base class for all social auth exceptions.

	AuthException

	Base exception class for authentication process errors.

	AuthFailed

	Authentication failed for some reason.

	AuthCanceled

	Authentication was canceled by the user.

	AuthUnknownError

	An unknown error stoped the authentication process.

	AuthTokenError

	Unauthorized or access token error, it was invalid, impossible to
authenticate or user removed permissions to it.

	AuthMissingParameter

	A needed parameter to continue the process was missing, usually raised by
the services that need some POST data like myOpenID.

	AuthAlreadyAssociated

	A different user has already associated the social account that the current
user is trying to associate.

	WrongBackend

	Raised when the backend given in the URLs is invalid (not enabled or
registered).

	NotAllowedToDisconnect

	Raised on disconnect action when it’s not safe for the user to disconnect
the social account, probably because the user lacks a password or another
social account.

	AuthStateMissing

	The state parameter is missing from the server response.

	AuthStateForbidden

	The state parameter returned by the server is not the one sent.

	AuthTokenRevoked

	Raised when the user revoked the access_token in the provider.

	AuthUnreachableProvider

	Raised when server couldn’t communicate with backend.

These are a subclass of ValueError to keep backward compatibility.

Backends

Here’s a list and detailed instruction on how to setup the support for each
backend.

Adding new backend support

Add new backends is quite easy, usually adding just a class with a couple
methods overrides to retrieve user data from services API. Follow the details
in the Implementation docs.

	Adding a new backend
	Common attributes

	OAuth

	OpenId

	Auth APIs

Supported backends

Here’s the list of currently supported backends.

Non-social backends

	Email Auth
	Backend settings

	Email validation

	Password handling

	Username Auth
	Backend settings

	Password handling

Base OAuth and OpenId classes

	OAuth

	OpenId
	Username

	SAML
	Required Dependency

	Required Configuration

	Basic Usage

	Advanced Settings

	Advanced Usage

Social backends

	Amazon

	Angel List

	AOL

	Appsfuel
	Appsfuel Live

	Appsfuel Sandbox

	ArcGIS
	OAuth2

	Microsoft Azure Active Directory

	Battle.net

	Beats
	OAuth2

	Behance
	DEPRECATED NOTICE

	Belgium EID

	Bitbucket
	OAuth2

	OAuth1

	User ID

	Box.net

	ChangeTip

	Clef

	Coinbase

	Coursera

	DailyMotion

	DigitalOcean

	Disqus

	Docker
	Docker.io OAuth2

	Douban
	Douban OAuth1

	Douban OAuth2

	Dribbble

	Drip

	Dropbox
	OAuth2 Api V2

	OAuth1

	OAuth2

	Edmodo

	EVE Online Single Sign-On (SSO)

	Evernote OAuth
	Sandbox

	Facebook
	OAuth2

	Canvas Application

	Fedora

	Fitbit
	OAuth 2.0 or OAuth 1.0a

	OAuth 2.0 specific settings

	Flickr

	Foursquare

	GitHub
	GitHub for Organizations

	GitHub for Teams

	Github for Enterprises

	GitHub Enterprise
	GitHub Enterprise for Organizations

	GitHub Enterprise for Teams

	GitLab

	Google
	Google OAuth

	Google OAuth2

	Google+ Sign-In

	Google OpenId

	Orkut

	User identification

	Refresh Tokens

	Scopes deprecation

	Instagram

	Itembase

	Jawbone

	Just Giving
	OAuth2

	Kakao

	Khan Academy

	Last.fm

	Launchpad

	Line.me

	LinkedIn
	OAuth1

	OAuth2

	LiveJournal

	MSN Live Connect

	LoginRadius

	Lyft

	MailChimp

	Mail.ru OAuth

	MapMyFitness

	Meetup

	Mendeley
	OAuth1

	OAuth2

	MineID
	Self-hosted MineID

	Mixcloud OAuth2

	Moves

	NationBuilder

	NationBuilder

	Naver

	NGP VAN ActionID

	Odnoklassniki.ru
	OAuth2

	IFrame applications

	OpenStreetMap

	Orbi

	Mozilla Persona

	Pinterest

	PixelPin
	PixelPin OAuth2

	Pocket

	Podio

	Qiita

	QQ

	Quizlet

	Rdio
	OAuth 1.0a

	OAuth 2.0

	Extra Fields

	Readability

	Reddit

	RunKeeper

	Salesforce

	Shimmering Verify

	Shopify

	Sketchfab

	Skyrock

	Slack

	SoundCloud

	Spotify
	OAuth2

	SUSE
	openSUSE OpenId

	Stackoverflow

	Steam OpenId

	StockTwits

	Strava

	Stripe

	Taobao OAuth

	ThisIsMyJam

	Trello

	TripIt

	Tumblr

	Twilio

	Twitch

	Twitter

	Uber

	OAuth2

	Untappd

	Upwork
	OAuth1

	Vend

	Vimeo

	VK.com (former Vkontakte)
	OAuth2

	OAuth2 Application

	OpenAPI

	Weibo OAuth

	Withings

	Wunderlist

	XING

	Yahoo
	Yahoo OpenId

	Yahoo OAuth2

	Yammer
	Production Mode

	Staging Mode

	Zotero

Adding a new backend

Add new backends is quite easy, usually adding just a class with a couple
settings and methods overrides to retrieve user data from services API. Follow
the details below.

Common attributes

First, lets check the common attributes for all backend types.

	name = ''

	Any backend needs a name, usually the popular name of the service is used,
like facebook, twitter, etc. It must be unique, otherwise another
backend can take precedence if it’s listed before in
AUTHENTICATION_BACKENDS setting.

	ID_KEY = None

	Defines the attribute in the service response that identifies the user as
unique in the service, the value is later stored in the uid attribute
in the UserSocialAuth instance.

	REQUIRES_EMAIL_VALIDATION = False

	Flags the backend to enforce email validation during the pipeline (if the
corresponding pipeline social_core.pipeline.mail.mail_validation was
enabled).

	EXTRA_DATA = None

	During the auth process some basic user data is returned by the provider or
retrieved by user_data() method which usually is used to call some API
on the provider to retrieve it. This data will be stored under
UserSocialAuth.extra_data attribute, but to make it accessible under
some common names on different providers, this attribute defines a list of
tuples in the form (name, alias) where name is the key in the user
data (which should be a dict instance) and alias is the name to
store it on extra_data.

OAuth

OAuth1 and OAuth2 provide share some common definitions based on the shared
behavior during the auth process, like a successful API response from
AUTHORIZATION_URL usually returns some basic user data like a user Id.

Shared attributes

	name

	This defines the backend name and identifies it during the auth process.
The name is used in the URLs /login/<backend name> and
/complete/<backend name>.

	ID_KEY = 'id'

	Default key name where user identification field is defined, it’s used on
auth process when some basic user data is returned. This Id is stored in
UserSocialAuth.uid field, this together the UserSocialAuth.provider
field is used to unique identify a user association.

	SCOPE_PARAMETER_NAME = 'scope'

	Scope argument is used to tell the provider the API endpoints you want to
call later, it’s a permissions request granted over the access_token
later retrieved. Default value is scope since that’s usually the name
used in the URL parameter, but can be overridden if needed.

	DEFAULT_SCOPE = None

	Some providers give nothing about the user but some basic data in required
like the user Id or an email address. Default scope attribute is used to
specify a default value for scope argument to request those extra used
bits.

	SCOPE_SEPARATOR = ' '

	The scope argument is usually a list of permissions to request, the
list is joined used a separator, usually just a blank space, but differ
from provider to provider, override the default value with this attribute
if it differs.

OAuth2

OAuth2 backends are fairly simple to implement; just a few settings, a method
override and it’s mostly ready to go.

The key points on this backends are:

	AUTHORIZATION_URL

	This is the entry point for the authorization mechanism, users must be
redirected to this URL, used on auth_url method which builds the
redirect address with AUTHORIZATION_URL plus some arguments
(client_id, redirect_uri, response_type, and state).

	ACCESS_TOKEN_URL

	Must point to the API endpoint that provides an access_token needed to
authenticate in users behalf on future API calls.

	REFRESH_TOKEN_URL

	Some providers give the option to renew the access_token since they are
usually limited in time, once that time runs out, the token is invalidated
and cannot be used any more. This attribute should point to that API
endpoint.

	RESPONSE_TYPE

	The response type expected on the auth process, default value is code
as dictated by OAuth2 definition. Override it if default value doesn’t fit
the provider implementation.

	STATE_PARAMETER

	OAuth2 defines that an state parameter can be passed in order to
validate the process, it’s kind of a CSRF check to avoid man in the middle
attacks. Some don’t recognise it or don’t return it which will make the
auth process invalid. Set this attribute to False in that case.

	REDIRECT_STATE

	For those providers that don’t recognise the state parameter, the app
can add a redirect_state argument to the redirect_uri to mimic it.
Set this value to False if the provider likes to verify the
redirect_uri value and this parameter invalidates that check.

Example code:

from social_core.backends.oauth import BaseOAuth2

class GithubOAuth2(BaseOAuth2):
 """Github OAuth authentication backend"""
 name = 'github'
 AUTHORIZATION_URL = 'https://github.com/login/oauth/authorize'
 ACCESS_TOKEN_URL = 'https://github.com/login/oauth/access_token'
 SCOPE_SEPARATOR = ','
 EXTRA_DATA = [
 ('id', 'id'),
 ('expires', 'expires')
]

 def get_user_details(self, response):
 """Return user details from Github account"""
 return {'username': response.get('login'),
 'email': response.get('email') or '',
 'first_name': response.get('name')}

 def user_data(self, access_token, *args, **kwargs):
 """Loads user data from service"""
 url = 'https://api.github.com/user?' + urlencode({
 'access_token': access_token
 })
 return self.get_json(url)

OAuth1

OAuth1 process is a bit more trickier, Twitter Docs [https://dev.twitter.com/docs/auth/implementing-sign-twitter] explains it quite well.
Beside the AUTHORIZATION_URL and ACCESS_TOKEN_URL attributes, a third
one is needed used when starting the process.

	REQUEST_TOKEN_URL = ''

	During the auth process an unauthorized token is needed to start the
process, later this token is exchanged for an access_token. This
setting points to the API endpoint where that unauthorized token can be
retrieved.

Example code:

from xml.dom import minidom

from social_core.backends.oauth import ConsumerBasedOAuth

class TripItOAuth(ConsumerBasedOAuth):
 """TripIt OAuth authentication backend"""
 name = 'tripit'
 AUTHORIZATION_URL = 'https://www.tripit.com/oauth/authorize'
 REQUEST_TOKEN_URL = 'https://api.tripit.com/oauth/request_token'
 ACCESS_TOKEN_URL = 'https://api.tripit.com/oauth/access_token'
 EXTRA_DATA = [('screen_name', 'screen_name')]

 def get_user_details(self, response):
 """Return user details from TripIt account"""
 try:
 first_name, last_name = response['name'].split(' ', 1)
 except ValueError:
 first_name = response['name']
 last_name = ''
 return {'username': response['screen_name'],
 'email': response['email'],
 'fullname': response['name'],
 'first_name': first_name,
 'last_name': last_name}

 def user_data(self, access_token, *args, **kwargs):
 """Return user data provided"""
 url = 'https://api.tripit.com/v1/get/profile'
 request = self.oauth_request(access_token, url)
 content = self.fetch_response(request)
 try:
 dom = minidom.parseString(content)
 except ValueError:
 return None

 return {
 'id': dom.getElementsByTagName('Profile')[0].getAttribute('ref'),
 'name': dom.getElementsByTagName(
 'public_display_name')[0].childNodes[0].data,
 'screen_name': dom.getElementsByTagName(
 'screen_name')[0].childNodes[0].data,
 'email': dom.getElementsByTagName(
 'is_primary')[0].parentNode.getElementsByTagName(
 'address')[0].childNodes[0].data,
 }

OpenId

OpenId is fair simpler that OAuth since it’s used for authentication rather
than authorization (regardless it’s used for authorization too).

A single attribute is usually needed, the authentication URL endpoint.

	URL = ''

	OpenId endpoint where to redirect the user.

Sometimes the URL is user dependant, like in myOpenId [https://www.myopenid.com/] where the URL is
https://<user handler>.myopenid.com. For those cases where the user must
input it’s handle (or full URL). The backend must override the openid_url()
method to retrieve it and return a full URL to where the user will be
redirected.

Example code:

from social_core.backends.open_id import OpenIdAuth
from social_core.exceptions import AuthMissingParameter

class LiveJournalOpenId(OpenIdAuth):
 """LiveJournal OpenID authentication backend"""
 name = 'livejournal'

 def get_user_details(self, response):
 """Generate username from identity url"""
 values = super(LiveJournalOpenId, self).get_user_details(response)
 values['username'] = values.get('username') or \
 urlparse.urlsplit(response.identity_url)\
 .netloc.split('.', 1)[0]
 return values

 def openid_url(self):
 """Returns LiveJournal authentication URL"""
 if not self.data.get('openid_lj_user'):
 raise AuthMissingParameter(self, 'openid_lj_user')
 return 'http://%s.livejournal.com' % self.data['openid_lj_user']

Auth APIs

For others authentication types, a BaseAuth class is defined to help. Those
custom auth methods must override the auth_url() and auth_complete()
methods.

Example code:

from google.appengine.api import users

from social_core.backends.base import BaseAuth
from social_core.exceptions import AuthException

class GoogleAppEngineAuth(BaseAuth):
 """GoogleAppengine authentication backend"""
 name = 'google-appengine'

 def get_user_id(self, details, response):
 """Return current user id."""
 user = users.get_current_user()
 if user:
 return user.user_id()

 def get_user_details(self, response):
 """Return user basic information (id and email only)."""
 user = users.get_current_user()
 return {'username': user.user_id(),
 'email': user.email(),
 'fullname': '',
 'first_name': '',
 'last_name': ''}

 def auth_url(self):
 """Build and return complete URL."""
 return users.create_login_url(self.redirect_uri)

 def auth_complete(self, *args, **kwargs):
 """Completes login process, must return user instance."""
 if not users.get_current_user():
 raise AuthException('Authentication error')
 kwargs.update({'response': '', 'backend': self})
 return self.strategy.authenticate(*args, **kwargs)

Email Auth

python-social-auth [https://github.com/python-social-auth] comes with an EmailAuth [https://github.com/python-social-auth/social-core/blob/master/social_core/backends/email.py] backend which comes handy when
your site uses requires the plain old email and password authentication
mechanism.

Actually that’s a lie since the backend doesn’t handle password at all, that’s
up to the developer to validate the password in and the proper place to do it
is the pipeline, right after the user instance was retrieved or created.

The reason to leave password handling to the developer is because too many
things are really tied to the project, like the field where the password is
stored, salt handling, password hashing algorithm and validation. So just add
the pipeline functions that will do that following the needs of your project.

Backend settings

	SOCIAL_AUTH_EMAIL_FORM_URL = '/login-form/'

	Used to redirect the user to the login/signup form, it must have at least
one field named email. Form submit should go to /complete/email,
or if it goes to your view, then your view should complete the process
calling social_core.actions.do_complete.

	SOCIAL_AUTH_EMAIL_FORM_HTML = 'login_form.html'

	The template will be used to render the login/signup form to the user, it
must have at least one field named email. Form submit should go to
/complete/email, or if it goes to your view, then your view should
complete the process calling social_core.actions.do_complete.

Email validation

Check Email validation pipeline in the pipeline docs.

Password handling

Here’s an example of password handling to add to the pipeline:

def user_password(strategy, backend, user, is_new=False, *args, **kwargs):
 if backend.name != 'email':
 return

 password = strategy.request_data()['password']
 if is_new:
 user.set_password(password)
 user.save()
 elif not user.validate_password(password):
 # return {'user': None, 'social': None}
 raise AuthForbidden(backend)

Username Auth

python-social-auth [https://github.com/python-social-auth] comes with an UsernameAuth [https://github.com/python-social-auth/social-core/blob/master/social_core/backends/username.py] backend which comes handy when
your site uses requires the plain old username and password authentication
mechanism.

Actually that’s a lie since the backend doesn’t handle password at all, that’s
up to the developer to validate the password in and the proper place to do it
is the pipeline, right after the user instance was retrieved or created.

The reason to leave password handling to the developer is because too many
things are really tied to the project, like the field where the password is
stored, salt handling, password hashing algorithm and validation. So just add
the pipeline functions that will do that following the needs of your project.

Backend settings

	SOCIAL_AUTH_USERNAME_FORM_URL = '/login-form/'

	Used to redirect the user to the login/signup form, it must have at least
one field named username. Form submit should go to /complete/username,
or if it goes to your view, then your view should complete the process
calling social_core.actions.do_complete.

	SOCIAL_AUTH_USERNAME_FORM_HTML = 'login_form.html'

	The template will be used to render the login/signup form to the user, it
must have at least one field named username. Form submit should go to
/complete/username, or if it goes to your view, then your view should
complete the process calling social_core.actions.do_complete.

Password handling

Here’s an example of password handling to add to the pipeline:

def user_password(strategy, user, is_new=False, *args, **kwargs):
 if strategy.backend.name != 'username':
 return

 password = strategy.request_data()['password']
 if is_new:
 user.set_password(password)
 user.save()
 elif not user.validate_password(password):
 # return {'user': None, 'social': None}
 raise AuthException(strategy.backend)

OAuth

OAuth [http://oauth.net/] communication demands a set of keys exchange to validate the client
authenticity prior to user approbation. Twitter, and Facebook facilitates
these keys by application registration, Google works the same,
but provides the option for unregistered applications.

Check next sections for details.

OAuth [http://oauth.net/] backends also can store extra data in UserSocialAuth.extra_data
field by defining a set of values names to retrieve from service response.

Settings is per backend and its name is dynamically checked using uppercase
backend name as prefix:

SOCIAL_AUTH_<uppercase backend name>_EXTRA_DATA

Example:

SOCIAL_AUTH_FACEBOOK_EXTRA_DATA = [(..., ...)]

Settings must be a list of tuples mapping value name in response and value
alias used to store. A third value (boolean) is supported, its purpose is
to signal if the value should be discarded if it evaluates to False, this
is to avoid replacing old (needed) values when they don’t form part of current
response. If not present, then this check is avoided and the value will replace
any data.

OpenId

OpenId [http://openid.net/] support is simpler to implement than OAuth [http://oauth.net/]. Google and Yahoo
providers are supported by default, others are supported by POST method
providing endpoint URL.

OpenId [http://openid.net/] backends can store extra data in UserSocialAuth.extra_data field
by defining a set of values names to retrieve from any of the used schemas,
AttributeExchange and SimpleRegistration. As their keywords differ we need
two settings.

Settings is per backend, so we have two possible values for each one. Name
is dynamically checked using uppercase backend name as prefix:

SOCIAL_AUTH_<uppercase backend name>_SREG_EXTRA_DATA
SOCIAL_AUTH_<uppercase backend name>_AX_EXTRA_DATA

Example:

SOCIAL_AUTH_GOOGLE_SREG_EXTRA_DATA = [(..., ...)]
SOCIAL_AUTH_GOOGLE_AX_EXTRA_DATA = [(..., ...)]

Settings must be a list of tuples mapping value name in response and value
alias used to store. A third value (boolean) is supported to, it’s purpose is
to signal if the value should be discarded if it evaluates to False, this
is to avoid replacing old (needed) values when they don’t form part of current
response. If not present, then this check is avoided and the value will replace
any data.

Username

The OpenId [http://openid.net/] backend will check for a username key in the values returned by
the server, but default to first-name + last-name if that key is
missing. It’s possible to indicate the username key in the values If the
username is under a different key with a setting, but backends should have
defined a default value. For example:

SOCIAL_AUTH_FEDORA_USERNAME_KEY = 'nickname'

This setting indicates that the username should be populated by the
nickname value in the Fedora OpenId [http://openid.net/] provider.

SAML

The SAML backend allows users to authenticate with any provider that supports
the SAML 2.0 protocol (commonly used for corporate or academic single sign on).

The SAML backend for python-social-auth allows your web app to act as a SAML
Service Provider. You can configure one or more SAML Identity Providers that
users can use for authentication. For example, if your users are students, you
could enable Harvard and MIT as identity providers, so that students of either
of those two universities can use their campus login to access your app.

Required Dependency

You must install python-saml [https://github.com/onelogin/python-saml] 2.2.0 or higher in order to use this
backend, if using Python 3, you need to install python3-saml [https://github.com/onelogin/python3-saml] 1.2.1 or
higher.

Required Configuration

At a minimum, you must add the following to your project’s settings:

	SOCIAL_AUTH_SAML_SP_ENTITY_ID: The SAML Entity ID for your app. This
should be a URL that includes a domain name you own. It doesn’t matter what
the URL points to. Example: http://saml.yoursite.com

	SOCIAL_AUTH_SAML_SP_PUBLIC_CERT: The X.509 certificate string for the
key pair that your app will use. You can generate a new self-signed key pair
with:

openssl req -new -x509 -days 3652 -nodes -out saml.crt -keyout saml.key

The contents of saml.crt should then be used as the value of this setting
(you can omit the first and last lines, which aren’t required).

	SOCIAL_AUTH_SAML_SP_PRIVATE_KEY: The private key to be used by your app.
If you used the example openssl command given above, set this to the contents
of saml.key (again, you can omit the first and last lines).

	SOCIAL_AUTH_SAML_ORG_INFO: A dictionary that contains information about
your app. You must specify values for English at a minimum. Each language’s
entry should specify a name (not shown to the user), a displayname
(shown to the user), and a URL. See the following
example:

{
 "en-US": {
 "name": "example",
 "displayname": "Example Inc.",
 "url": "http://example.com",
 }
}

	SOCIAL_AUTH_SAML_TECHNICAL_CONTACT: A dictionary with two values,
givenName and emailAddress, describing the name and email of a
technical contact responsible for your app. Example:

{"givenName": "Tech Gal", "emailAddress": "technical@example.com"}

	SOCIAL_AUTH_SAML_TECHNICAL_CONTACT: A dictionary with two values,
givenName and emailAddress, describing the name and email of a
support contact for your app. Example:

SOCIAL_AUTH_SAML_SUPPORT_CONTACT = {
 "givenName": "Support Guy",
 "emailAddress": "support@example.com",
}

	SOCIAL_AUTH_SAML_ENABLED_IDPS: The most important setting. List the Entity
ID, SSO URL, and x.509 public key certificate for each provider that your app
wants to support. The SSO URL must support the HTTP-Redirect binding.
You can get these values from the provider’s XML metadata. Here’s an example,
for TestShib [https://www.testshib.org/] (the values come from TestShib’s metadata [https://www.testshib.org/metadata/testshib-providers.xml]):

{
 "testshib": {
 "entity_id": "https://idp.testshib.org/idp/shibboleth",
 "url": "https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO",
 "x509cert": "MIIEDjCCAvagAwIBAgIBADA ... 8Bbnl+ev0peYzxFyF5sQA==",
 }
}

Basic Usage

	Set all of the required configuration variables described above.

	Generate the SAML XML metadata for your app. The best way to do this is to
create a new view/page/URL in your app that will call the backend’s
generate_metadata_xml() method. Here’s an example of how to do this in
Django:

def saml_metadata_view(request):
 complete_url = reverse('social:complete', args=("saml",))
 saml_backend = load_backend(
 load_strategy(request),
 "saml",
 redirect_uri=complete_url,
)
 metadata, errors = saml_backend.generate_metadata_xml()
 if not errors:
 return HttpResponse(content=metadata, content_type='text/xml')

	Download the metadata for your app that was generated by the above method,
and send it to each Identity Provider (IdP) that you wish to use. Each IdP
must install and configure your metadata on their system before it will work.

	Now everything is set! To allow users to login with any given IdP, you need to
give them a link to the python-social-auth “begin”/”auth” URL and include an
idp query parameter that specifies the name of the IdP to use. This is
needed since the backend supports multiple IdPs. The names of the IdPs are the
keys used in the SOCIAL_AUTH_SAML_ENABLED_IDPS setting.

Django example:

In view:
context['testshib_url'] = u"{base}?{params}".format(
 base=reverse('social:begin', kwargs={'backend': 'saml'}),
 params=urllib.urlencode({'next': '/home', 'idp': 'testshib'})
)
In template:
TestShib Login
Result:
TestShib Login

	Testing with the TestShib [https://www.testshib.org/] provider is recommended, as it is known to work
well.

Advanced Settings

	SOCIAL_AUTH_SAML_SP_EXTRA: This can be set to a dict, and any key/value
pairs specified here will be passed to the underlying python-saml library
configuration’s sp setting. Refer to the python-saml documentation for
details.

	SOCIAL_AUTH_SAML_SECURITY_CONFIG: This can be set to a dict, and any
key/value pairs specified here will be passed to the underlying
python-saml library configuration’s security setting. Two useful keys
that you can set are metadataCacheDuration and metadataValidUntil,
which control the expiry time of your XML metadata. By default, a cache
duration of 10 days will be used, which means that IdPs are allowed to cache
your metadata for up to 10 days, but no longer. metadataCacheDuration must
be specified as an ISO 8601 duration string (e.g. P1D for one day).

Advanced Usage

You can subclass the SAMLAuth backend to provide custom functionality. In
particular, there are two methods that are designed for subclasses to override:

	get_idp(self, idp_name): Given the name of an IdP, return an instance of
SAMLIdentityProvider with the details of the IdP. Override this method if
you wish to use some other method for configuring the available identity
providers, such as fetching them at runtime from another server, or using a
list of providers from a Shibboleth federation.

	_check_entitlements(self, idp, attributes): This method gets called during
the login process and is where you can decide to accept or reject a user based
on the user’s SAML attributes. For example, you can restrict access to your
application to only accept users who belong to a certain department. After
inspecting the passed attributes parameter, do nothing to allow the user to
login, or raise social_core.exceptions.AuthForbidden to reject the user.

Amazon

Amazon implemented OAuth2 protocol for their authentication mechanism. To
enable python-social-auth support follow this steps:

	Go to Amazon App Console [http://login.amazon.com/manageApps] and create an application.

	Fill App Id and Secret in your project settings:

SOCIAL_AUTH_AMAZON_KEY = '...'
SOCIAL_AUTH_AMAZON_SECRET = '...'

	Enable the backend:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.amazon.AmazonOAuth2',
 ...
)

Further documentation at Website Developer Guide [https://images-na.ssl-images-amazon.com/images/G/01/lwa/dev/docs/website-developer-guide._TTH_.pdf] and Getting Started for Web [http://login.amazon.com/website].

	Note: This backend supports TLSv1 protocol since SSL will be deprecated

	from May 25, 2015

Angel List

Angel uses OAuth v2 for Authentication.

	Register a new application at the Angel List API [https://angel.co/api/oauth/faq], and

	fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_ANGEL_KEY = ''
SOCIAL_AUTH_ANGEL_SECRET = ''

	extra scopes can be defined by using:

SOCIAL_AUTH_ANGEL_AUTH_EXTRA_ARGUMENTS = {'scope': 'email messages'}

Note:
Angel List does not currently support returning state parameter used to
validate the auth process.

AOL

AOL OpenId doesn’t require major settings beside being defined on
AUTHENTICATION_BACKENDS`:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.aol.AOLOpenId',
 ...
)

Appsfuel

Appsfuel uses OAuth v2 for Authentication check the official docs [http://docs.appsfuel.com/api_reference#api_integration] too.

	Sign up at the Appsfuel Developer Program [https://developer.appsfuel.com]

	Create and verify a new app

	On the dashboard click on Show API keys

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_APPSFUEL_KEY = '<App UID>'
SOCIAL_AUTH_APPSFUEL_SECRET = '<App secret>'

Appsfuel gives you the chance to integrate with Live or Sandbox env.

Appsfuel Live

	Add ‘social_core.backends.contrib.appsfuel.AppsfuelBackend’ into your
AUTHENTICATION_BACKENDS.

	Then you can start using {% url social:begin 'appsfuel' %} in your
templates

Appsfuel Sandbox

	Add 'social_core.backends.appsfuel.AppsfuelOAuth2Sandbox' into your
AUTHENTICATION_BACKENDS.

	Then you can start using {% url social:begin 'appsfuel-sandbox' %} in
your templates

	Define the settings:

SOCIAL_AUTH_APPSFUEL_SANDBOX_KEY = '<App UID>'
SOCIAL_AUTH_APPSFUEL_SANDBOX_SECRET = '<App secret>'

ArcGIS

ArcGIS uses OAuth2 for authentication.

	Register a new application at ArcGIS Developer Center [https://developers.arcgis.com/].

OAuth2

	Add the OAuth2 backend to your settings page:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.arcgis.ArcGISOAuth2',
 ...
)

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_ARCGIS_KEY = ''
SOCIAL_AUTH_ARCGIS_SECRET = ''

Microsoft Azure Active Directory

To enable OAuth2 support:

	Fill in Client ID and Client Secret settings. These values can be
obtained easily as described in Azure AD Application Registration [https://msdn.microsoft.com/en-us/library/azure/dn132599.aspx] doc:

SOCIAL_AUTH_AZUREAD_OAUTH2_KEY = ''
SOCIAL_AUTH_AZUREAD_OAUTH2_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_AZUREAD_OAUTH2_RESOURCE = ''

This is the resource you would like to access after authentication succeeds.
Some of the possible values are: https://graph.windows.net or
https://<your Sharepoint site name>-my.sharepoint.com.

Battle.net

Blizzard implemented OAuth2 protocol for their authentication mechanism. To
enable python-social-auth support follow this steps:

	Go to Battlenet Developer Portal [https://dev.battle.net/] and create an application.

	Fill App Id and Secret in your project settings:

SOCIAL_AUTH_BATTLENET_OAUTH2_KEY = '...'
SOCIAL_AUTH_BATTLENET_OAUTH2_SECRET = '...'

	Enable the backend:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.battlenet.BattleNetOAuth2',
 ...
)

Note: If you want to allow the user to choose a username from his own
characters, some further steps are required, see the use cases part of the
documentation. To get the account id and battletag use the user_data function, as
account id is no longer passed inherently [http://us.battle.net/en/forum/topic/18300183303].

Another note: If you get a 500 response “Internal Server Error” the API now requires https on callback endpoints [http://us.battle.net/en/forum/topic/17085510584].

Further documentation at Developer Guide [https://dev.battle.net/docs/read/oauth].

Beats

Beats supports OAuth 2.

	Register a new application at Beats Music API [https://developer.beatsmusic.com/docs], and follow the
instructions below.

OAuth2

Add the Beats OAuth2 backend to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.beats.BeatsOAuth2',
 ...
)

	Fill App Key and App Secret values in the settings:

SOCIAL_AUTH_BEATS_OAUTH2_KEY = ''
SOCIAL_AUTH_BEATS_OAUTH2_SECRET = ''

Behance

DEPRECATED NOTICE

NOTE: IT SEEMS THAT BEHANCE HAS DROPPED THEIR OAUTH2 SUPPORT WITHOUT MUCH
NOTICE BESIDE A BLOG POST [http://blog.behance.net/dev/introducing-the-behance-api] ON SEPTEMBER 2014 MENTIONING THAT IT WILL BE
INTRODUCED “SOON”. THIS BACKEND IS IN DEPRECATED STATE FOR NOW.

Behance uses OAuth2 for its auth mechanism.

	Register a new application at Behance App Registration [http://www.behance.net/dev/register], set your
application name, website and redirect URI.

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_BEHANCE_KEY = ''
SOCIAL_AUTH_BEHANCE_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_BEHANCE_SCOPE = [...]

Check available permissions at Possible Scopes [http://www.behance.net/dev/authentication#scopes]. Also check the rest of their
doc at Behance Developer Documentation [http://www.behance.net/dev].

Belgium EID

Belgium EID OpenId doesn’t require major settings beside being defined on
AUTHENTICATION_BACKENDS`:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.belgiumeid.BelgiumEIDOpenId',
 ...
)

Bitbucket

Bitbucket supports both OAuth2 and OAuth1 logins.

	Register a new OAuth Consumer by following the instructions in the
Bitbucket documentation: OAuth on Bitbucket [https://confluence.atlassian.com/display/BITBUCKET/OAuth+on+Bitbucket]

Note: For OAuth2, your consumer MUST have the “account” scope otherwise
the user profile information (username, name, etc.) won’t be accessible.

	Configure the appropriate settings for OAuth2 or OAuth1 (see below).

OAuth2

	Fill Consumer Key and Consumer Secret values in the settings:

SOCIAL_AUTH_BITBUCKET_OAUTH2_KEY = '<your-consumer-key>'
SOCIAL_AUTH_BITBUCKET_OAUTH2_SECRET = '<your-consumer-secret>'

	If you would like to restrict access to only users with verified e-mail
addresses, set SOCIAL_AUTH_BITBUCKET_OAUTH2_VERIFIED_EMAILS_ONLY = True
By default the setting is set to False since it’s possible for a
project to gather this information by other methods.

OAuth1

	OAuth1 works similarly to OAuth2, but you must fill in the following settings
instead:

SOCIAL_AUTH_BITBUCKET_KEY = '<your-consumer-key>'
SOCIAL_AUTH_BITBUCKET_SECRET = '<your-consumer-secret>'

	If you would like to restrict access to only users with verified e-mail
addresses, set SOCIAL_AUTH_BITBUCKET_VERIFIED_EMAILS_ONLY = True.
By default the setting is set to False since it’s possible for a
project to gather this information by other methods.

User ID

Bitbucket recommends the use of UUID [https://confluence.atlassian.com/display/BITBUCKET/Use+the+Bitbucket+REST+APIs] as the user identifier instead
of username since they can change and impose a security risk. For
that reason UUID is used by default, but for backward
compatibility reasons, it’s possible to get the old behavior again by
defining this setting:

SOCIAL_AUTH_BITBUCKET_USERNAME_AS_ID = True

Box.net

Box works similar to Facebook (OAuth2).

	Register an application at Manage Box Applications [https://app.box.com/developers/services]

	Fill the Consumer Key and Consumer Secret values in your settings:

SOCIAL_AUTH_BOX_KEY = ''
SOCIAL_AUTH_BOX_SECRET = ''

	By default the token is not permanent, it will last an hour. To refresh the
access token just do:

from social_django.utils import load_strategy

strategy = load_strategy(backend='box')
user = User.objects.get(pk=foo)
social = user.social_auth.filter(provider='box')[0]
social.refresh_token(strategy=strategy)

ChangeTip

ChangeTip

	Register a new application at ChangeTip [https://www.changetip.com/api], set the callback URL to
http://example.com/complete/changetip/ replacing example.com with your
domain.

	Fill Client ID and Client Secret values in the settings:

SOCIAL_AUTH_CHANGETIP_KEY = ''
SOCIAL_AUTH_CHANGETIP_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_CHANGETIP_SCOPE = [...]

See auth scopes at ChangeTip OAuth docs [https://www.changetip.com/api/auth/#!#scopes].

Clef

Clef works similar to Facebook (OAuth).

	Register a new application at Clef Developers [https://getclef.com/developer], set the callback URL to
http://example.com/complete/clef/ replacing example.com with your
domain.

	Fill App Id and App Secret values in the settings:

SOCIAL_AUTH_CLEF_KEY = ''
SOCIAL_AUTH_CLEF_SECRET = ''

Coinbase

Coinbase uses OAuth2.

	Register an application at Coinbase [https://coinbase.com/oauth/applications]

	Fill in the Client Id and Client Secret values in your settings:

SOCIAL_AUTH_COINBASE_KEY = ''
SOCIAL_AUTH_COINBASE_SECRET = ''

	Set the redirect_url on coinbase. Make sure to include the trailing
slash, eg. http://hostname/complete/coinbase/

	Specify scopes with:

SOCIAL_AUTH_COINBASE_SCOPE = [...]

By default the scope is set to balance.

Coursera

Coursera uses a variant of OAuth2 authentication. The details of the API
can be found at OAuth2-based APIs - Coursera Technology [https://tech.coursera.org/app-platform/oauth2/].

Take the following steps in order to use the backend:

	Create an account at Coursera [https://accounts.coursera.org/console].

	Open Developer Console [https://accounts.coursera.org/console], create an organisation and application.

3. Set Client ID as a SOCIAL_AUTH_COURSERA_KEY and
Secret Key as a SOCIAL_AUTH_COURSERA_SECRET in your local settings.

	Add the backend to AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.coursera.CourseraOAuth2',
 ...
)

DailyMotion

DailyMotion uses OAuth2. In order to enable the backend follow:

	Register an application at DailyMotion Developer Portal [http://www.dailymotion.com/profile/developer/new]

	Fill in the Client Id and Client Secret values in your settings:

SOCIAL_AUTH_DAILYMOTION_KEY = ''
SOCIAL_AUTH_DAILYMOTION_SECRET = ''

	Set the Callback URL to http://<your hostname>/complete/dailymotion/

	Specify scopes with:

SOCIAL_AUTH_DAILYMOTION_SCOPE = [...]

Available scopes are listed in the Requesting Extended Permissions [http://www.dailymotion.com/doc/api/authentication.html#requesting-extended-permissions]
section.

DigitalOcean

DigitalOcean uses OAuth2 for its auth process. See the full DigitalOcean
developer’s documentation [https://developers.digitalocean.com/documentation/] for more information.

	Register a new application in the Apps & API page [https://cloud.digitalocean.com/settings/applications] in the DigitalOcean
control panel, setting the callback URL to http://example.com/complete/digitalocean/
replacing example.com with your domain.

	Fill the Client ID and Client Secret values from GitHub in the settings:

SOCIAL_AUTH_DIGITALOCEAN_KEY = ''
SOCIAL_AUTH_DIGITALOCEAN_SECRET = ''

	By default, only read permissions are granted. In order to create,
destroy, and take other actions on the user’s resources, you must request
read write permissions like so:

SOCIAL_AUTH_DIGITALOCEAN_AUTH_EXTRA_ARGUMENTS = {'scope': 'read write'}

Disqus

Disqus uses OAuth v2 for Authentication.

	Register a new application at the Disqus API [http://disqus.com/api/applications/], and

	fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_DISQUS_KEY = ''
SOCIAL_AUTH_DISQUS_SECRET = ''

	extra scopes can be defined by using:

SOCIAL_AUTH_DISQUS_AUTH_EXTRA_ARGUMENTS = {'scope': 'likes comments relationships'}

Check Disqus Auth API [http://disqus.com/api/docs/auth/] for details.

Docker

Docker.io OAuth2

Docker.io now supports OAuth2 for their API. In order to set it up:

	Register a new application by following the instructions in their website:
Register Your Application [http://docs.docker.io/en/latest/reference/api/docker_io_oauth_api/#register-your-application]

	Fill Consumer Key and Consumer Secret values in settings:

SOCIAL_AUTH_DOCKER_KEY = ''
SOCIAL_AUTH_DOCKER_SECRET = ''

	Add 'social_core.backends.docker.DockerOAuth2' into your
SOCIAL_AUTH_AUTHENTICATION_BACKENDS.

Douban

Douban supports OAuth 1 and 2.

Douban OAuth1

Douban OAuth 1 works similar to Twitter OAuth.

Douban offers per application keys named Consumer Key and Consumer
Secret. To enable Douban OAuth these two keys are needed. Further
documentation at Douban Services & API [http://www.douban.com/service/]:

	Register a new application at Douban API Key [http://www.douban.com/service/apikey/apply], make sure to mark the web
application checkbox.

	Fill Consumer Key and Consumer Secret values in settings:

SOCIAL_AUTH_DOUBAN_KEY = ''
SOCIAL_AUTH_DOUBAN_SECRET = ''

	Add 'social_core.backends.douban.DoubanOAuth' into your
SOCIAL_AUTH_AUTHENTICATION_BACKENDS.

Douban OAuth2

Recently Douban launched their OAuth2 support and the new developer site, you
can find documentation at Douban Developers [http://developers.douban.com/]. To setup OAuth2 follow:

	Register a new application at Create A Douban App [http://developers.douban.com/apikey/apply], make sure to mark the
web application checkbox.

	Fill Consumer Key and Consumer Secret values in settings:

SOCIAL_AUTH_DOUBAN_OAUTH2_KEY = ''
SOCIAL_AUTH_DOUBAN_OAUTH2_SECRET = ''

	Add 'social_core.backends.douban.DoubanOAuth2' into your
SOCIAL_AUTH_AUTHENTICATION_BACKENDS.

Dribbble

Dribbble

	Register a new application at Dribbble [https://dribbble.com/account/applications/new], set the callback URL
to http://example.com/complete/dribbble/ replacing
example.com with your domain.

	Fill Client ID and Client Secret values in the settings:

SOCIAL_AUTH_DRIBBBLE_KEY = ''
SOCIAL_AUTH_DRIBBBLE_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_DRIBBBLE_SCOPE = [...]

See auth scopes at Dribbble Developer docs [http://developer.dribbble.com/v1/oauth/].

Drip

Drip uses OAuth v2 for Authentication.

	Register a new application with Drip [https://www.getdrip.com/user/applications], and

	fill Client ID and Client Secret from getdrip.com values in
the settings:

SOCIAL_AUTH_DRIP_KEY = ''
SOCIAL_AUTH_DRIP_SECRET = ''

Dropbox

Dropbox supports both OAuth 1 and 2.

	Register a new application at Dropbox Developers [https://www.dropbox.com/developers/apps], and follow the
instructions below for the version of OAuth for which you are adding
support.

OAuth2 Api V2

Add the Dropbox OAuth2 backend to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social.backends.dropbox.DropboxOAuth2V2',
 ...
)

	Fill App Key and App Secret values in the settings:

SOCIAL_AUTH_DROPBOX_OAUTH2_KEY = ''
SOCIAL_AUTH_DROPBOX_OAUTH2_SECRET = ''

OAuth1

Deprecated since version V1: api is deprecated.

https://blogs.dropbox.com/developers/2016/06/api-v1-deprecated/
Add the Dropbox OAuth backend to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.dropbox.DropboxOAuth',
 ...
)

	Fill App Key and App Secret values in the settings:

SOCIAL_AUTH_DROPBOX_KEY = ''
SOCIAL_AUTH_DROPBOX_SECRET = ''

OAuth2

Deprecated since version V1: api is deprecated.

https://blogs.dropbox.com/developers/2016/06/api-v1-deprecated/

Add the Dropbox OAuth2 backend to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.dropbox.DropboxOAuth2',
 ...
)

	Fill App Key and App Secret values in the settings:

SOCIAL_AUTH_DROPBOX_OAUTH2_KEY = ''
SOCIAL_AUTH_DROPBOX_OAUTH2_SECRET = ''

Edmodo

Edmodo supports OAuth 2.

	Register a new application at Edmodo Connect API [https://developers.edmodo.com/edmodo-connect/edmodo-connect-overview-getting-started/], and follow the
instructions below.

	Add the Edmodo OAuth2 backend to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.edmodo.EdmodoOAuth2',
 ...
)

	Fill App Key, App Secret and App Scope values in the settings:

SOCIAL_AUTH_EDMODO_OAUTH2_KEY = ''
SOCIAL_AUTH_EDMODO_OAUTH2_SECRET = ''
SOCIAL_AUTH_EDMODO_SCOPE = ['basic']

EVE Online Single Sign-On (SSO)

The EVE Single Sign-On (SSO) works similar to GitHub (OAuth2).

	Register a new application at EVE Developers [https://developers.eveonline.com/], set the callback URL to
http://example.com/complete/eveonline/ replacing example.com with your
domain.

	Fill the Client ID and Secret Key values from EVE Developers in the settings:

SOCIAL_AUTH_EVEONLINE_KEY = ''
SOCIAL_AUTH_EVEONLINE_SECRET = ''

	If you want to use EVE Character names as user names, use this setting:

SOCIAL_AUTH_CLEAN_USERNAMES = False

	If you want to access EVE Online’s CREST API, use:

SOCIAL_AUTH_EVEONLINE_SCOPE = ['publicData']

Evernote OAuth

Evernote OAuth 1.0 for its authentication workflow.

	Register a new application at Evernote API Key form [http://dev.evernote.com/support/api_key.php].

	Fill Consumer Key and Consumer Secret values in the settings:

SOCIAL_AUTH_EVERNOTE_KEY = ''
SOCIAL_AUTH_EVERNOTE_SECRET = ''

Sandbox

Evernote supports a sandbox mode for testing, there’s a custom backend for it
which name is evernote-sandbox instead of evernote. Same settings apply
but use these instead:

SOCIAL_AUTH_EVERNOTE_SANDBOX_KEY = ''
SOCIAL_AUTH_EVERNOTE_SANDBOX_SECRET = ''

Facebook

OAuth2

Facebook uses OAuth2 for its auth process. Further documentation at Facebook
development resources [http://developers.facebook.com/docs/authentication/]:

	Register a new application at Facebook App Creation [http://developers.facebook.com/setup/], don’t use
localhost as App Domains and Site URL since Facebook won’t allow
them. Use a placeholder like myapp.com and define that domain in your
/etc/hosts or similar file.

	fill App Id and App Secret values in values:

SOCIAL_AUTH_FACEBOOK_KEY = ''
SOCIAL_AUTH_FACEBOOK_SECRET = ''

	Define SOCIAL_AUTH_FACEBOOK_SCOPE to get extra permissions
from facebook. Email is not sent by default, to get it, you must request the
email permission:

SOCIAL_AUTH_FACEBOOK_SCOPE = ['email']

	Define SOCIAL_AUTH_FACEBOOK_PROFILE_EXTRA_PARAMS to pass extra parameters
to https://graph.facebook.com/me when gathering the user profile data (you need
to explicitly ask for fields like email using fields key):

SOCIAL_AUTH_FACEBOOK_PROFILE_EXTRA_PARAMS = {
 'locale': 'ru_RU',
 'fields': 'id, name, email, age_range'
}

If you define a redirect URL in Facebook setup page, be sure to not define
http://127.0.0.1:8000 or http://localhost:8000 because it won’t work when
testing. Instead I define http://myapp.com and setup a mapping on /etc/hosts.

Currently the backend uses Facebook API version 2.8, this value can
be overridden by the following setting if needed:

SOCIAL_AUTH_FACEBOOK_API_VERSION = '2.9'

Canvas Application

If you need to perform authentication from Facebook Canvas application:

	Create your canvas application at http://developers.facebook.com/apps

	In Facebook application settings specify your canvas URL mysite.com/fb
(current default)

	Setup your Python Social Auth settings and your application namespace:

SOCIAL_AUTH_FACEBOOK_APP_KEY = ''
SOCIAL_AUTH_FACEBOOK_APP_SECRET = ''
SOCIAL_AUTH_FACEBOOK_APP_NAMESPACE = ''

	Launch your testing server on port 80 (use sudo or nginx or apache) for
browser to be able to load it when Facebook calls canvas URL

	Open your Facebook page via http://apps.facebook.com/app_namespace or
better via http://www.facebook.com/pages/user-name/user-id?sk=app_app-id

	After that you will see this page in a right way and will able to connect
to application and login automatically after connection

	Provide a template to be rendered, it must have this JavaScript snippet (or
similar) in it:

<script type="text/javascript">
 var domain = 'https://apps.facebook.com/',
 redirectURI = domain + {{ FACEBOOK_APP_NAMESPACE }} + '/';

 window.top.location = 'https://www.facebook.com/dialog/oauth/' +
 '?client_id={{ FACEBOOK_KEY }}' +
 '&redirect_uri=' + encodeURIComponent(redirectURI) +
 '&scope={{ FACEBOOK_EXTENDED_PERMISSIONS }}';
</script>

More info on the topic at Facebook Canvas Application Authentication [http://www.ikrvss.ru/2011/09/22/django-social-auth-and-facebook-canvas-applications/].

Fedora

Fedora OpenId doesn’t require major settings beside being defined on
AUTHENTICATION_BACKENDS`:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.fedora.FedoraOpenId',
 ...
)

Fitbit

Fitbit supports both OAuth 2.0 and OAuth 1.0a logins. OAuth 2 is
preferred for new integrations, as OAuth 1.0a does not support getting
heartrate or location and will be deprecated in the future.

	Register a new OAuth Consumer here [https://dev.fitbit.com/apps/new]

	Configure the appropriate settings for OAuth 2.0 or OAuth 1.0a (see
below).

OAuth 2.0 or OAuth 1.0a

	Fill Consumer Key and Consumer Secret values in the
settings:

SOCIAL_AUTH_FITBIT_KEY = '<your-consumer-key>'
SOCIAL_AUTH_FITBIT_SECRET = '<your-consumer-secret>'

OAuth 2.0 specific settings

By default, only the profile scope is requested. To request more
scopes, set SOCIAL_AUTH_FITBIT_SCOPE:

SOCIAL_AUTH_FITBIT_SCOPE = [
 'activity',
 'heartrate',
 'location',
 'nutrition',
 'profile',
 'settings',
 'sleep',
 'social',
 'weight'
]

The above will request all permissions from the user.

Flickr

Flickr uses OAuth v1.0 for authentication.

	Register a new application at the Flickr App Garden [http://www.flickr.com/services/apps/create/], and

	fill Key and Secret values in the settings:

SOCIAL_AUTH_FLICKR_KEY = ''
SOCIAL_AUTH_FLICKR_SECRET = ''

	Flickr might show a messages saying “Oops! Flickr doesn’t recognise the
permission set.”, if encountered with this error, just define this setting:

SOCIAL_AUTH_FLICKR_AUTH_EXTRA_ARGUMENTS = {'perms': 'read'}

Foursquare

Foursquare uses OAuth2. In order to enable the backend follow:

	Register an application at Foursquare Developers Portal [https://foursquare.com/developers/register],
set the Redirect URI to http://<your hostname>/complete/foursquare/

	Fill in the Client Id and Client Secret values in your settings:

SOCIAL_AUTH_FOURSQUARE_KEY = ''
SOCIAL_AUTH_FOURSQUARE_SECRET = ''

GitHub

GitHub works similar to Facebook (OAuth).

	Register a new application at GitHub Developers [https://github.com/settings/applications/new], set the callback URL to
http://example.com/complete/github/ replacing example.com with your
domain.

	Fill the Client ID and Client Secret values from GitHub in the settings:

SOCIAL_AUTH_GITHUB_KEY = ''
SOCIAL_AUTH_GITHUB_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_GITHUB_SCOPE = [...]

GitHub for Organizations

When defining authentication for organizations, use the
GithubOrganizationOAuth2 backend instead. The settings are the same as
the non-organization backend, but the names must be:

SOCIAL_AUTH_GITHUB_ORG_*

Be sure to define the organization name using the setting:

SOCIAL_AUTH_GITHUB_ORG_NAME = ''

This name will be used to check that the user really belongs to the given
organization and discard it if they’re not part of it.

GitHub for Teams

Similar to GitHub for Organizations, there’s a GitHub for Teams backend,
use the backend GithubTeamOAuth2. The settings are the same as
the basic backend, but the names must be:

SOCIAL_AUTH_GITHUB_TEAM_*

Be sure to define the Team ID using the setting:

SOCIAL_AUTH_GITHUB_TEAM_ID = ''

This id will be used to check that the user really belongs to the given
team and discard it if they’re not part of it.

Github for Enterprises

Check the docs GitHub Enterprise if planning to use Github
Enterprises.

GitHub Enterprise

GitHub Enterprise works similar to regular Github, which is in turn based on Facebook (OAuth).

	Register a new application on your instance of GitHub Enterprise Developers [https://<your_github_enterprise_domain>/settings/applications/new],
set the callback URL to http://example.com/complete/github/ replacing example.com
with your domain.

	Set the API URL for your Github Enterprise appliance:

SOCIAL_AUTH_GITHUB_ENTERPRISE_API_URL = ‘https://git.example.com/api/v3/‘

	Fill the Client ID and Client Secret values from GitHub in the settings:

SOCIAL_AUTH_GITHUB_ENTERPRISE_KEY = ‘’
SOCIAL_AUTH_GITHUB_ENTERPRISE_SECRET = ‘’

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_GITHUB_ENTERPRISE_SCOPE = [...]

GitHub Enterprise for Organizations

When defining authentication for organizations, use the
GithubEnterpriseOrganizationOAuth2 backend instead. The settings are the same as
the non-organization backend, but the names must be:

SOCIAL_AUTH_GITHUB_ENTERPRISE_ORG_*

Be sure to define the organization name using the setting:

SOCIAL_AUTH_GITHUB_ENTERPRISE_ORG_NAME = ''

This name will be used to check that the user really belongs to the given
organization and discard it if they’re not part of it.

GitHub Enterprise for Teams

Similar to GitHub Enterprise for Organizations, there’s a GitHub for Teams backend,
use the backend GithubEnterpriseTeamOAuth2. The settings are the same as
the basic backend, but the names must be:

SOCIAL_AUTH_GITHUB_ENTERPRISE_TEAM_*

Be sure to define the Team ID using the setting:

SOCIAL_AUTH_GITHUB_ENTERPRISE_TEAM_ID = ''

This id will be used to check that the user really belongs to the given
team and discard it if they’re not part of it.

GitLab

GitLab supports OAuth2 protocol.

	Register a new application at GitLab Applications [https://gitlab.com/profile/applications].

	Set the callback URL to http://example.com/complete/gitlab/
replacing example.com with your domain. Drop the trailing slash
if the project doesn’t use it, the URL must match the value sent.

	Ensure to mark the read_user scope. If marking api scope too, define:

SOCIAL_AUTH_GITLAB_SCOPE = ['api']

	Fill the Client ID and Client Secret values from GitLab in the settings:

SOCIAL_AUTH_GITLAB_KEY = ''
SOCIAL_AUTH_GITLAB_SECRET = ''

If your GitLab setup resides in another domain, then add the following setting:

SOCIAL_AUTH_GITLAB_API_URL = 'https://example.com'

it must be the full url to your GitLab setup.

Google

This section describes how to setup the different services provided by Google.

Google OAuth

Attention

Google OAuth deprecation
Important: OAuth 1.0 was officially deprecated on April 20, 2012, and will be
shut down on April 20, 2015. We encourage you to migrate to any of the other
protocols.

Google provides Consumer Key and Consumer Secret keys to registered
applications, but also allows unregistered application to use their authorization
system with, but beware that this method will display a security banner to the
user telling that the application is not trusted.

Check Google OAuth [http://code.google.com/apis/accounts/docs/OAuth.html] and make your choice.

	fill Consumer Key and Consumer Secret values:

SOCIAL_AUTH_GOOGLE_OAUTH_KEY = ''
SOCIAL_AUTH_GOOGLE_OAUTH_SECRET = ''

anonymous values will be used if not configured as described in their
OAuth reference [http://code.google.com/apis/accounts/docs/OAuth_ref.html#SigningOAuth]

	setup any needed extra scope in:

SOCIAL_AUTH_GOOGLE_OAUTH_SCOPE = [...]

Google OAuth2

Recently Google launched OAuth2 support following the definition at OAuth2 draft.
It works in a similar way to plain OAuth mechanism, but developers must register
an application and apply for a set of keys. Check Google OAuth2 [http://code.google.com/apis/accounts/docs/OAuth2.html] document for details.

When creating the application in the Google Console be sure to fill the
PRODUCT NAME at API & auth -> Consent screen form.

To enable OAuth2 support:

	fill Client ID and Client Secret settings, these values can be obtained
easily as described on OAuth2 Registering [http://code.google.com/apis/accounts/docs/OAuth2.html#Registering] doc:

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = ''
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = ''

	setup any needed extra scope:

SOCIAL_AUTH_GOOGLE_OAUTH2_SCOPE = [...]

Check which applications can be included in their Google Data Protocol Directory [http://code.google.com/apis/gdata/docs/directory.html]

Google+ Sign-In

Google+ Sign In [https://developers.google.com/+/web/signin/] works a lot like OAuth2, but most of the initial work is
done by their Javascript which thens calls a defined handler to complete the
auth process.

	To enable the backend create an application using the Google
console [https://code.google.com/apis/console] and following the steps from the official guide [https://developers.google.com/+/web/signin/#step_1_create_a_client_id_and_client_secret]. Make
sure to enable the Google+ API in the console.

	Fill in the key settings looking inside the Google console the subsection
Credentials inside API & auth:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.google.GooglePlusAuth',
)

SOCIAL_AUTH_GOOGLE_PLUS_KEY = '...'
SOCIAL_AUTH_GOOGLE_PLUS_SECRET = '...'

SOCIAL_AUTH_GOOGLE_PLUS_KEY corresponds to the variable CLIENT ID.
SOCIAL_AUTH_GOOGLE_PLUS_SECRET corresponds to the variable
CLIENT SECRET.

	Add the sign-in button to your template, you can use the SDK button
or add your own and attach the click handler to it (check Google+ Identity Sign-In [https://developers.google.com/identity/sign-in/web/sign-in]
documentation about it):

<div id="google-plus-button">Google+ Sign In</div>

	Add the Javascript snippet in the same template as above:

<script src="https://apis.google.com/js/api:client.js"></script>

<script type="text/javascript">
 gapi.load('auth2', function () {
 var auth2;

 auth2 = gapi.auth2.init({
 client_id: "<PUT SOCIAL_AUTH_GOOGLE_PLUS_KEY HERE>",
 scope: "<PUT BACKEND SCOPE HERE>"
 });

 auth2.then(function () {
 var button = document.getElementById("google-plus-button");
 console.log("User is signed-in in Google+ platform?", auth2.isSignedIn.get() ? "Yes" : "No");

 auth2.attachClickHandler(button, {}, function (googleUser) {
 // Send access-token to backend to finish the authenticate
 // with your application

 var authResponse = googleUser.getAuthResponse();
 var $form;
 var $input;

 $form = $("<form>");
 $form.attr("action", "/complete/google-plus");
 $form.attr("method", "post");
 $input = $("<input>");
 $input.attr("name", "access_token");
 $input.attr("value", authResponse.access_token);
 $form.append($input);
 // Add csrf-token if needed
 $(document.body).append($form);
 $form.submit();
 });
 });
 });
</script>

	Logging out

Logging-out can be tricky when using the the platform SDK because it
can trigger an automatic sign-in when listening to the user status
change. With the method show above, that won’t happen, but if the UI
depends more in the SDK values than the backend, then things can get
out of sync easilly. To prevent this, the user should be logged-out
from Google+ platform too. This can be accomplished by doing:

<script type="text/javascript">
 gapi.load('auth2', function () {
 var auth2;

 auth2 = gapi.auth2.init({
 client_id: "{{ plus_id }}",
 scope: "{{ plus_scope }}"
 });

 auth2.then(function () {
 if (auth2.isSignedIn.get()) {
 $('#logout').on('click', function (event) {
 event.preventDefault();
 auth2.signOut().then(function () {
 console.log("Logged out from Google+ platform");
 document.location = "/logout";
 });
 });
 }
 });
 });
</script>

Google OpenId

Google OpenId works straightforward, not settings are needed. Domains or emails
whitelists can be applied too, check the whitelists settings for details.

Orkut

As of September 30, 2014, Orkut has been shut down [https://support.google.com/orkut/?csw=1#Authenticating].

User identification

Optional support for static and unique Google Profile ID identifiers instead of
using the e-mail address for account association can be enabled with:

SOCIAL_AUTH_GOOGLE_OAUTH_USE_UNIQUE_USER_ID = True

or:

SOCIAL_AUTH_GOOGLE_OAUTH2_USE_UNIQUE_USER_ID = True

depending on the backends in use.

Refresh Tokens

To get an OAuth2 refresh token along with the access token, you must pass an extra argument: access_type=offline.
To do this with Google+ sign-in:

SOCIAL_AUTH_GOOGLE_PLUS_AUTH_EXTRA_ARGUMENTS = {
 'access_type': 'offline'
}

Scopes deprecation

Google is deprecating the full-url scopes from Sept 1, 2014 [https://developers.google.com/+/api/auth-migration#timetable] in favor of
Google+ API and the recently introduced shorter scopes names. But
python-social-auth already introduced the scopes change at e3525187 [https://github.com/omab/python-social-auth/commit/e35251878a88954cecf8e575eca27c63164b9f67] which
was released at v0.1.24.

But, to enable the new scopes the application requires Google+ API to be
enabled in the Google console [https://code.google.com/apis/console] dashboard, the change is quick and quite
simple, but if any developer desires to keep using the old scopes, it’s
possible with the following settings:

Google OAuth2 (google-oauth2)
SOCIAL_AUTH_GOOGLE_OAUTH2_IGNORE_DEFAULT_SCOPE = True
SOCIAL_AUTH_GOOGLE_OAUTH2_SCOPE = [
 'https://www.googleapis.com/auth/userinfo.email',
 'https://www.googleapis.com/auth/userinfo.profile'
]

Google+ SignIn (google-plus)
SOCIAL_AUTH_GOOGLE_PLUS_IGNORE_DEFAULT_SCOPE = True
SOCIAL_AUTH_GOOGLE_PLUS_SCOPE = [
 'https://www.googleapis.com/auth/plus.login',
 'https://www.googleapis.com/auth/userinfo.email',
 'https://www.googleapis.com/auth/userinfo.profile'
]

To ease the change, the old API and scopes is still supported by the
application, the new values are the default option but if having troubles
supporting them you can default to the old values by defining this setting:

SOCIAL_AUTH_GOOGLE_OAUTH2_USE_DEPRECATED_API = True
SOCIAL_AUTH_GOOGLE_PLUS_USE_DEPRECATED_API = True

Instagram

Instagram uses OAuth v2 for Authentication.

	Register a new application at the Instagram API [http://instagr.am/developer/], and

	Add instagram backend to AUTHENTICATION_SETTINGS:

AUTHENTICATION_SETTINGS = (
 ...
 'social_core.backends.instagram.InstagramOAuth2',
 ...
)

	fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_INSTAGRAM_KEY = ''
SOCIAL_AUTH_INSTAGRAM_SECRET = ''

	extra scopes can be defined by using:

SOCIAL_AUTH_INSTAGRAM_AUTH_EXTRA_ARGUMENTS = {'scope': 'likes comments relationships'}

Itembase

Itembase uses OAuth2 for authentication.

	Register a new application for the Itembase API [http://developers.itembase.com/authentication/index], and

	Add itembase live backend and/or sandbox backend to AUTHENTICATION_BACKENDS:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.itembase.ItembaseOAuth2',
 'social_core.backends.itembase.ItembaseOAuth2Sandbox',
 ...
)

	fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_ITEMBASE_KEY = ''
SOCIAL_AUTH_ITEMBASE_SECRET = ''

SOCIAL_AUTH_ITEMBASE_SANDBOX_KEY = ''
SOCIAL_AUTH_ITEMBASE_SANDBOX_SECRET = ''

	extra scopes can be defined by using:

SOCIAL_AUTH_ITEMBASE_SCOPE = ['connection.transaction',
 'connection.product',
 'connection.profile',
 'connection.buyer']
SOCIAL_AUTH_ITEMBASE_SANDBOX_SCOPE = SOCIAL_AUTH_ITEMBASE_SCOPE

To use data from the extra scopes, you need to do an extra activation step
that is not in the usual OAuth flow. For that you can extend your pipeline and
add a function that sends the user to an activation URL that Itembase provides.
The method to retrieve the activation data is included in the backend:

@partial
def activation(strategy, backend, response, *args, **kwargs):
 if backend.name.startswith("itembase"):

 if strategy.session_pop('itembase_activation_in_progress'):
 strategy.session_set('itembase_activated', True)

 if not strategy.session_get('itembase_activated'):
 activation_data = backend.activation_data(response)
 strategy.session_set('itembase_activation_in_progress', True)
 return HttpResponseRedirect(activation_data['activation_url'])

Jawbone

Jawbone uses OAuth2. In order to enable the backend follow:

	Register an application at Jawbone Developer Portal [https://jawbone.com/up/developer/account/], set the OAuth
redirect URIs to http://<your hostname>/complete/jawbone/

	Fill in the Client Id and Client Secret values in your settings:

SOCIAL_AUTH_JAWBONE_KEY = ''
SOCIAL_AUTH_JAWBONE_SECRET = ''

	Specify scopes with:

SOCIAL_AUTH_JAWBONE_SCOPE = [...]

Available scopes are listed in the Jawbone Authentication Reference [https://jawbone.com/up/developer/authentication],
“socpes” section.

Just Giving

OAuth2

Follow the steps at Just Giving API Docs [https://api.justgiving.com/docs] to register your
application and get the needed keys.

	Add the Just Giving OAuth2 backend to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.justgiving.JustGivingOAuth2',
 ...
)

	Fill App Key and App Secret values in the settings:

SOCIAL_AUTH_JUSTGIVING_KEY = ''
SOCIAL_AUTH_JUSTGIVING_SECRET = ''

Kakao

Kakao uses OAuth v2 for Authentication.

	Register a new applicationat the Kakao API [https://developers.kakao.com/docs/restapi], and

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_KAKAO_KEY = ''
SOCIAL_AUTH_KAKAO_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_KAKAO_SCOPE = [...]

Khan Academy

Khan Academy uses a variant of OAuth1 authentication flow. Check the API
details at Khan Academy API Authentication [https://github.com/Khan/khan-api/wiki/Khan-Academy-API-Authentication].

Follow this steps in order to use the backend:

	Register a new application at Khan Academy API Apps [http://www.khanacademy.org/api-apps/register],

	Fill Consumer Key and Consumer Secret values:

SOCIAL_AUTH_KHANACADEMY_OAUTH1_KEY = ''
SOCIAL_AUTH_KHANACADEMY_OAUTH1_SECRET = ''

	Add the backend to AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.khanacademy.KhanAcademyOAuth1',
 ...
)

Last.fm

Last.fm uses a similar authentication process than OAuth2 but it’s not. In
order to enable the support for it just:

	Register an application at Get an API Account [http://www.last.fm/api/account/create], set the Last.fm callback to
something sensible like http://your.site/complete/lastfm

	Fill in the API Key and API Secret values in your settings:

SOCIAL_AUTH_LASTFM_KEY = ''
SOCIAL_AUTH_LASTFM_SECRET = ''

	Enable the backend in AUTHENTICATION_BACKENDS setting.

Launchpad

Ubuntu Launchpad [https://launchpad.net/] OpenId doesn’t require
major settings beside being defined on AUTHENTICATION_BACKENDS`:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.launchpad.LaunchpadOpenId',
 ...
)

Line.me

Fill App Id and Secret in your project settings:

SOCIAL_AUTH_LINE_KEY = '...'
SOCIAL_AUTH_LINE_SECRET = '...'

LinkedIn

LinkedIn supports OAuth1 and OAuth2. Migration between each type is fair simple
since the same Key / Secret pair is used for both authentication types.

LinkedIn OAuth setup is similar to any other OAuth service. The auth flow is
explained on LinkedIn Developers [http://developer.linkedin.com/documents/authentication] docs. First you will need to register an
app att LinkedIn Developer Network [https://www.linkedin.com/secure/developer].

OAuth1

	Fill the application key and secret in your settings:

SOCIAL_AUTH_LINKEDIN_KEY = ''
SOCIAL_AUTH_LINKEDIN_SECRET = ''

	Application scopes can be specified by:

SOCIAL_AUTH_LINKEDIN_SCOPE = [...]

Check the available options at LinkedIn Scopes [https://developer.linkedin.com/documents/authentication#granting]. If you want to request
a user’s email address, you’ll need specify that your application needs
access to the email address use the r_emailaddress scope.

	To request extra fields using LinkedIn fields selectors [http://developer.linkedin.com/docs/DOC-1014] just define this
setting:

SOCIAL_AUTH_LINKEDIN_FIELD_SELECTORS = [...]

with the needed fields selectors, also define SOCIAL_AUTH_LINKEDIN_EXTRA_DATA
properly as described in OAuth, that way the values will be
stored in UserSocialAuth.extra_data field. By default id,
first-name and last-name are requested and stored.

For example, to request a user’s email, headline, and industry from the
Linkedin API and store the information in UserSocialAuth.extra_data, you
would add these settings:

Add email to requested authorizations.
SOCIAL_AUTH_LINKEDIN_SCOPE = ['r_basicprofile', 'r_emailaddress', ...]
Add the fields so they will be requested from linkedin.
SOCIAL_AUTH_LINKEDIN_FIELD_SELECTORS = ['email-address', 'headline', 'industry']
Arrange to add the fields to UserSocialAuth.extra_data
SOCIAL_AUTH_LINKEDIN_EXTRA_DATA = [('id', 'id'),
 ('firstName', 'first_name'),
 ('lastName', 'last_name'),
 ('emailAddress', 'email_address'),
 ('headline', 'headline'),
 ('industry', 'industry')]

OAuth2

OAuth2 works exacly the same than OAuth1, but the settings must be named as:

SOCIAL_AUTH_LINKEDIN_OAUTH2_*

Looks like LinkedIn is forcing the definition of the callback URL in the
application when OAuth2 is used. Be sure to set the proper values, otherwise
a (400) Client Error: Bad Request might be returned by their service.

LiveJournal

LiveJournal provides OpenId, it doesn’t require any major settings in order to
work, beside being defined on AUTHENTICATION_BACKENDS`:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.aol.AOLOpenId',
 ...
)

LiveJournal OpenId is provided by URLs in the form http://<username>.livejournal.com,
this application retrieves the username from the data in the current
request by checking a parameter named openid_lj_user which can be sent by
POST or GET.

MSN Live Connect

Live uses OAuth2 for its connect workflow, notice that it isn’t OAuth WRAP.

	Register a new application at Live Connect Developer Center [https://account.live.com/developers/applications/create], set your site
domain as redirect domain,

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_LIVE_KEY = ''
SOCIAL_AUTH_LIVE_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_LIVE_SCOPE = [...]

Defaults are wl.basic and wl.emails. Latter one is necessary to
retrieve user email.

	Ensure to have a valid Redirect URL (http://your-domain/complete/live)
defined in the application if Enhanced security redirection is enabled.

LoginRadius

LoginRadius uses OAuth2 for Authentication with other providers with an HTML
widget used to trigger the auth process.

	Register a new application at the LoginRadius Website [https://loginradius.com/], and

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_LOGINRADIUS_KEY = ''
SOCIAL_AUTH_LOGINRADIUS_SECRET = ''

	Since the auth process is triggered by LoginRadius JS script, you need to
sever such content to the user, all you need to do that is a template with
the following content:

<div id="interfacecontainerdiv" class="interfacecontainerdiv"></div>
<script src="https://hub.loginradius.com/include/js/LoginRadius.js"></script>
<script type="text/javascript">
 var options = {};
 options.login = true;
 LoginRadius_SocialLogin.util.ready(function () {
 $ui = LoginRadius_SocialLogin.lr_login_settings;
 $ui.interfacesize = "";
 $ui.apikey = "{{ LOGINRADIUS_KEY }}";
 $ui.callback = "{{ LOGINRADIUS_REDIRECT_URL }}";
 $ui.lrinterfacecontainer = "interfacecontainerdiv";
 LoginRadius_SocialLogin.init(options);
 });
</script>

Put that content in a template named loginradius.html (accessible to your
framework), or define a name with SOCIAL_AUTH_LOGINRADIUS_TEMPLATE setting,
like:

SOCIAL_AUTH_LOGINRADIUS_LOCAL_HTML = 'loginradius.html'

The template context will have the current backend instance under the
backend name, also the application key (LOGINRADIUS_KEY) and the
redirect URL (LOGINRADIUS_REDIRECT_URL).

	Further documentation can be found at LoginRadius API Documentation [http://api.loginradius.com/help/] and
LoginRadius Datapoints [http://www.loginradius.com/datapoints/]

Lyft

Lyft implements OAuth2 as its authorization service. To setup a Lyft backend:

	Register a new application via the Lyft Developer Portal [https://developer.lyft.com/].

	Add the Lyft OAuth2 backend as an option in your settings:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.lyft.LyftOAuth2',
 ...
)

	Use the Client Id and Client Secret from the Developer Portal into your settings:

SOCIAL_AUTH_LYFT_KEY = ''
SOCIAL_AUTH_LYFT_SECRET = ''

	Specify the scope that your app should have access to:

SOCIAL_AUTH_LYFT_SCOPE = ['public', 'profile', 'rides.read', 'rides.request']

To learn more about the API and the calls that are available, read the Lyft API Documentation [https://developer.lyft.com/docs].

MailChimp

MailChimp uses OAuth v2 for Authentication, check the official docs [https://apidocs.mailchimp.com/oauth2/].

	Create an app by filling out the form here: Add App [https://admin.mailchimp.com/account/oauth2/]

	Fill Client ID and Client Secret values in the settings:

SOCIAL_AUTH_MAILCHIMP_KEY = '<App UID>'
SOCIAL_AUTH_MAILCHIMP_SECRET = '<App secret>'

	Add the backend to the AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.mailchimp.MailChimpOAuth2',
 ...
)

	Then you can start using {% url social_core:begin 'mailchimp' %} in
your templates

Mail.ru OAuth

Mail.ru uses OAuth2 workflow, to use it fill in settings:

SOCIAL_AUTH_MAILRU_OAUTH2_KEY = ''
SOCIAL_AUTH_MAILRU_OAUTH2_SECRET = ''

MapMyFitness

MapMyFitness uses OAuth v2 for authentication.

	Register a new application at the MapMyFitness API [https://www.mapmyapi.com], and

	fill key and secret values in the settings:

SOCIAL_AUTH_MAPMYFITNESS_KEY = ''
SOCIAL_AUTH_MAPMYFITNESS_SECRET = ''

Meetup

Meetup.com uses OAuth2 for its auth mechanism.

	Register a new OAuth Consumer at Meetup Consumer Registration [https://secure.meetup.com/meetup_api/oauth_consumers/create], set your
consumer name, redirect uri.

	Fill key and secret values in the settings:

SOCIAL_AUTH_MEETUP_KEY = ''
SOCIAL_AUTH_MEETUP_SECRET = ''

Mendeley

Mendeley supports OAuth1 and OAuth2, they are in the process of deprecating
OAuth1 API (which should be fully deprecated on April 2014, check their
announcement [https://sites.google.com/site/mendeleyapi/home/authentication]).

OAuth1

In order to support OAuth1 (not recomended, use OAuth2 instead):

	Register a new application at Mendeley Application Registration [http://dev.mendeley.com/applications/register/]

	Fill Consumer Key and Consumer Secret values:

SOCIAL_AUTH_MENDELEY_KEY = ''
SOCIAL_AUTH_MENDELEY_SECRET = ''

OAuth2

In order to support OAuth2:

	Register a new application at Mendeley Application Registration [http://dev.mendeley.com/applications/register/], or
migrate your OAuth1 application, check their migration steps here [https://groups.google.com/forum/#!topic/mendeley-open-api-developers/KmUQW9I0ST0].

	Fill Application ID and Application Secret values:

SOCIAL_AUTH_MENDELEY_OAUTH2_KEY = ''
SOCIAL_AUTH_MENDELEY_OAUTH2_SECRET = ''

MineID

MineID works similar to Facebook (OAuth).

	Register a new application at MineID.org [https://www.mineid.org/], set the callback URL to
http://example.com/complete/mineid/ replacing example.com with your
domain.

	Fill Client ID and Client Secret values in the settings:

SOCIAL_AUTH_MINEID_KEY = ''
SOCIAL_AUTH_MINEID_SECRET = ''

Self-hosted MineID

Since MineID is an Open Source software and can be self-hosted, you can
change settings to point to your instance:

SOCIAL_AUTH_MINEID_HOST = 'www.your-mineid-instance.com'
SOCIAL_AUTH_MINEID_SCHEME = 'https' # or 'http'

Mixcloud OAuth2

The Mixcloud API [http://www.mixcloud.com/developers/documentation] offers support for authorization. To this backend support:

	Register a new application at Mixcloud Developers [http://www.mixcloud.com/developers]

	Add Mixcloud backend to AUTHENTICATION_BACKENDS in settings:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.mixcloud.MixcloudOAuth2',
)

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_MIXCLOUD_KEY = ''
SOCIAL_AUTH_MIXCLOUD_SECRET = ''

	Similar to the other OAuth backends you can define:

SOCIAL_AUTH_MIXCLOUD_EXTRA_DATA = [('username', 'username'),
 ('name', 'name'),
 ('pictures', 'pictures'),
 ('url', 'url')]

as a list of tuples (response name, alias) to store user profile data on
the UserSocialAuth.extra_data.

Moves

Moves [http://moves-app.com/] provides an OAuth2 authentication flow. In order to enable it:

	Register an application at Manage Your Apps [https://dev.moves-app.com/apps], remember to fill the
Redirect URI once the application was created.

	Fill Client ID and Client secret in the settings:

SOCIAL_AUTH_MOVES_KEY = ''
SOCIAL_AUTH_MOVES_SECRET = ''

	Define the mandatory scope for your application:

SOCIAL_AUTH_MOVES_SCOPE = ['activity', 'location']

The scope parameter is required by Moves [http://moves-app.com/] but the backend doesn’t set
a default one to minimize the application permissions request, so it’s
mandatory for the developer to define this setting.

	Add the backend to the AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.moves.MovesOAuth2',
 ...
)

NationBuilder

NaszaKlasa supports OAuth2 [https://developers.nk.pl] as their authentication mechanism. Follow these
steps in order to use it:

	Register a new application at your NK Developers [https://developers.nk.pl/developers/oauth2client/form] (define the Callback
URL to http://example.com/complete/nk/ where example.com
is your domain).

	Fill the Client ID and Client Secret values from the newly created
application:

SOCIAL_AUTH_NK_KEY = ''
SOCIAL_AUTH_NK_SECRET = ''

	Enable the backend in AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.nk.NKOAuth2',
 ...
)

NationBuilder

NationBuilder supports OAuth2 [http://nationbuilder.com/api_quickstart] as their authentication mechanism. Follow these
steps in order to use it:

	Register a new application at your Nation Admin panel [https://psa.nationbuilder.com/admin/apps] (define the Callback
URL to http://example.com/complete/nationbuilder/ where example.com
is your domain).

	Fill the Client ID and Client Secret values from the newly created
application:

SOCIAL_AUTH_NATIONBUILDER_KEY = ''
SOCIAL_AUTH_NATIONBUILDER_SECRET = ''

	Also define your NationBuilder slug:

SOCIAL_AUTH_NATIONBUILDER_SLUG = 'your-nationbuilder-slug'

	Enable the backend in AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.nationbuilder.NationBuilderOAuth2'
 ...
)

Naver

Naver uses OAuth v2 for Authentication.

	Register a new application at the Naver API [https://nid.naver.com/devcenter/docs.nhn?menu=API], and

	add naver oauth backend to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.naver.NaverOAuth2',
 ...
)

	fill Client ID and Client Secret from developer.naver.com
values in the settings:

SOCIAL_AUTH_NAVER_KEY = ''
SOCIAL_AUTH_NAVER_SECRET = ''

	you can get EXTRA_DATA:

SOCIAL_AUTH_NAVER_EXTRA_DATA = ['nickname', 'gender', 'age',
 'birthday', 'profile_image']

NGP VAN ActionID

NGP VAN [http://www.ngpvan.com/]‘s ActionID [http://developers.ngpvan.com/action-id] service provides an OpenID 1.1 endpoint, which provides
first name, last name, email address, and phone number.

ActionID doesn’t require major settings beside being defined on
AUTHENTICATION_BACKENDS

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.ngpvan.ActionIDOpenID',
 ...
)

If you want to be able to access the “phone” attribute offered by NGP VAN
within extra_data you can add the following to your settings:

SOCIAL_AUTH_ACTIONID_OPENID_AX_EXTRA_DATA = [
 ('http://openid.net/schema/contact/phone/business', 'phone')
]

NGP VAN offers the ability to have your domain whitelisted, which will disable
the “{domain} is requesting a link to your ActionID” warning when your app
attempts to login using an ActionID account. Contact
NGP VAN Developer Support [http://developers.ngpvan.com/support/contact] for more information

Odnoklassniki.ru

There are two options with Odnoklassniki: either you use OAuth2 workflow to
authenticate odnoklassniki users at external site, or you authenticate users
within your IFrame application.

OAuth2

If you use OAuth2 workflow, you need to:

	register a new application with OAuth registration form [https://apiok.ru/wiki/pages/viewpage.action?pageId=42476652]

	fill out some settings:

SOCIAL_AUTH_ODNOKLASSNIKI_OAUTH2_KEY = ''
SOCIAL_AUTH_ODNOKLASSNIKI_OAUTH2_SECRET = ''
SOCIAL_AUTH_ODNOKLASSNIKI_OAUTH2_PUBLIC_NAME = ''

	add 'social_core.backends.odnoklassniki.OdnoklassnikiOAuth2' into your
SOCIAL_AUTH_AUTHENTICATION_BACKENDS.

IFrame applications

If you want to authenticate users in your IFrame application,

	read Rules for application developers [https://apiok.ru/wiki/display/ok/Odnoklassniki.ru+Third+Party+Platform]

	fill out Developers registration form [https://apiok.ru/wiki/pages/viewpage.action?pageId=5668937]

	get your personal sandbox

	fill out some settings:

SOCIAL_AUTH_ODNOKLASSNIKI_APP_KEY = ''
SOCIAL_AUTH_ODNOKLASSNIKI_APP_SECRET = ''
SOCIAL_AUTH_ODNOKLASSNIKI_APP_PUBLIC_NAME = ''

	add 'social_core.backends.odnoklassniki.OdnoklassnikiApp' into your
SOCIAL_AUTH_AUTHENTICATION_BACKENDS

	sign a public offer and do some bureaucracy

You may also use:

SOCIAL_AUTH_ODNOKLASSNIKI_APP_EXTRA_USER_DATA_LIST

Defaults to empty tuple, for the list of available fields see Documentation on user.getInfo [https://apiok.ru/wiki/display/ok/REST+API+-+users.getInfo]

OpenStreetMap

OpenStreetMap supports OAuth 1.0 and 1.0a but 1.0a should be used for the new
applications, as 1.0 is for support of legacy clients only.

Access tokens currently do not expire automatically.

More documentation at OpenStreetMap Wiki [http://wiki.openstreetmap.org/wiki/OAuth]:

	Login to your account

	Register your application as OAuth consumer on your OpenStreetMap user settings page [http://www.openstreetmap.org/user/username/oauth_clients/new], and

	Set App Key and App Secret values in the settings:

SOCIAL_AUTH_OPENSTREETMAP_KEY = ''
SOCIAL_AUTH_OPENSTREETMAP_SECRET = ''

Orbi

Orbi OAuth v2 for Authentication.

	Register a new applicationat the Orbi API [http://orbi.kr], and

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_ORBI_KEY = ''
SOCIAL_AUTH_ORBI_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_KAKAO_SCOPE = ['all']

Mozilla Persona

Support for Mozilla Persona [http://www.mozilla.org/persona/] is possible by posting the assertion code to
/complete/persona/ URL.

The setup doesn’t need any setting, just the usual Mozilla Persona [http://www.mozilla.org/persona/]
javascript include in your document and the needed mechanism to trigger the
POST to python-social-auth [https://github.com/python-social-auth]:

<!-- Include BrowserID JavaScript -->
<script src="https://login.persona.org/include.js" type="text/javascript"></script>

<!-- Define a form to send the POST data -->
<form method="post" action="/complete/persona/">
 <input type="hidden" name="assertion" value="" />
 Mozilla Persona
</form>

<!-- Setup click handler that retieves Persona assertion code and sends POST data -->
<script type="text/javascript">
 $(function () {
 $('#persona').click(function (e) {
 e.preventDefault();
 var self = $(this);

 navigator.id.get(function (assertion) {
 if (assertion) {
 self.parent('form')
 .find('input[type=hidden]')
 .attr('value', assertion)
 .end()
 .submit();
 } else {
 alert('Some error occurred');
 }
 });
 });
 });
</script>

Pinterest

Pinterest implemented OAuth2 protocol for their authentication mechanism.
To enable python-social-auth support follow this steps:

	Go to Pinterest developers zone [https://developers.pinterest.com/apps/] and create an application.

	Fill App Id and Secret in your project settings:

SOCIAL_AUTH_PINTEREST_KEY = '...'
SOCIAL_AUTH_PINTEREST_SECRET = '...'
SOCIAL_AUTH_PINTEREST_SCOPE = [
 'read_public',
 'write_public',
 'read_relationships',
 'write_relationships'
]

	Enable the backend:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.pinterest.PinterestOAuth2',
 ...
)

PixelPin

PixelPin only supports OAuth2.

PixelPin OAuth2

Developer documentation for PixelPin can be found at
http://developer.pixelpin.co.uk/. To setup OAuth2 do the following:

	Register a new developer account at PixelPin Developers [http://developer.pixelpin.co.uk/].

You require a PixelPin account to create developer accounts. Sign up at
PixelPin Account Page [https://login.pixelpin.co.uk/] For the value of redirect uri, use whatever path you
need to return to on your web application. The example code provided with the
plugin uses http://<yoursite>/complete/pixelpin-oauth2/.

Once verified by email, record the values of client id and secret for the
next step.

	Fill Consumer Key and Consumer Secret values in your settings.py
file:

SOCIAL_AUTH_PIXELPIN_OAUTH2_KEY = ''
SOCIAL_AUTH_PIXELPIN_OAUTH2_SECRET = ''

	Add 'social_core.backends.pixelpin.PixelPinOAuth2' into your
SOCIAL_AUTH_AUTHENTICATION_BACKENDS.

Pocket

Pocket uses a weird variant of OAuth v2 that only defines a consumer key.

	Register a new application at the Pocket API [http://getpocket.com/developer/], and

	fill consumer key value in the settings:

SOCIAL_AUTH_POCKET_KEY = ''

Podio

Podio offers OAuth2 as their auth mechanism. In order to enable it, follow:

	Register a new application at Podio API Keys [https://developers.podio.com/api-key]

	Fill Client Id and Client Secret values:

SOCIAL_AUTH_PODIO_KEY = ''
SOCIAL_AUTH_PODIO_SECRET = ''

Qiita

Qiita

	Register a new application at Qiita [https://qiita.com/settings/applications], set the callback URL to
http://example.com/complete/qiita/ replacing example.com with your
domain.

	Fill Client ID and Client Secret values in the settings:

SOCIAL_AUTH_QIITA_KEY = ''
SOCIAL_AUTH_QIITA_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_QIITA_SCOPE = [...]

See auth scopes at Qiita Scopes docs [https://qiita.com/api/v2/docs#スコープ].

QQ

QQ implemented OAuth2 protocol for their authentication mechanism. To enable
python-social-auth support follow this steps:

	Go to QQ [http://connect.qq.com/] and create an application.

	Fill App Id and Secret in your project settings:

SOCIAL_AUTH_QQ_KEY = '...'
SOCIAL_AUTH_QQ_SECRET = '...'

	Enable the backend:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.qq.QQOauth2',
 ...
)

The values for nickname, figureurl_qq_1 and gender will be stored
in the extra_data field. The nickname will be used as the account
username. figureurl_qq_1 can be used as the profile image.

Sometimes nickname will duplicate with another qq account, to avoid this
issue it’s possible to use openid as username by define this setting:

SOCIAL_AUTH_QQ_USE_OPENID_AS_USERNAME = True

Quizlet

Quizlet uses OAuth v2 for Authentication.

	Register a new application at the Quizlet API [https://quizlet.com/api-dashboard], and

	Add the Quizlet backend to AUTHENTICATION_SETTINGS:

AUTHENTICATION_SETTINGS = (
 ...
 'social_core.backends.quizlet.QuizletOAuth2',
 ...
)

	fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_QUIZLET_KEY = ''
SOCIAL_AUTH_QUIZLET_SECRET = ''
SOCIAL_AUTH_QUIZLET_SCOPE = ['read', 'write_set'] # 'write_group' is also available

Rdio

Rdio provides OAuth 1 and 2 support for their authentication process.

OAuth 1.0a

To setup Rdio OAuth 1.0a, add the following to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.rdio.RdioOAuth1',
 ...
)

SOCIAL_AUTH_RDIO_OAUTH1_KEY = ''
SOCIAL_AUTH_RDIO_OAUTH1_SECRET = ''

OAuth 2.0

To setup Rdio OAuth 2.0, add the following to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.rdio.RdioOAuth2',
 ...
)

SOCIAL_AUTH_RDIO_OAUTH2_KEY = os.environ['RDIO_OAUTH2_KEY']
SOCIAL_AUTH_RDIO_OAUTH2_SECRET = os.environ['RDIO_OAUTH2_SECRET']
SOCIAL_AUTH_RDIO_OAUTH2_SCOPE = []

Extra Fields

The following extra fields are automatically requested:

	rdio_id

	rdio_icon_url

	rdio_profile_url

	rdio_username

	rdio_stream_region

Readability

Readability works similarly to Twitter, in that you’ll need a Consumer Key
and Consumer Secret. These can be obtained in the Connections section
of your Account page.

	Fill the Consumer Key and Consumer Secret values in your settings:

SOCIAL_AUTH_READABILITY_KEY = ''
SOCIAL_AUTH_READABILITY_SECRET = ''

That’s it! By default you’ll get back:

username
first_name
last_name

with EXTRA_DATA, you can get:

date_joined
kindle_email_address
avatar_url
email_into_address

Reddit

Reddit implements OAuth2 authentication workflow [https://github.com/reddit/reddit/wiki/OAuth2]. To enable it, just follow:

	Register an application at Reddit Preferences Apps [https://ssl.reddit.com/prefs/apps/]

	Fill the Consumer Key and Consumer Secret values in your settings:

SOCIAL_AUTH_REDDIT_KEY = ''
SOCIAL_AUTH_REDDIT_SECRET = ''

	By default the token is not permanent, it will last an hour. To get
a refresh token just define:

SOCIAL_AUTH_REDDIT_AUTH_EXTRA_ARGUMENTS = {'duration': 'permanent'}

This will store the refresh_token in UserSocialAuth.extra_data
attribute, to refresh the access token just do:

from social_django.utils import load_strategy

strategy = load_strategy(backend='reddit')
user = User.objects.get(pk=foo)
social = user.social_auth.filter(provider='reddit')[0]
social.refresh_token(strategy=strategy,
 redirect_uri='http://localhost:8000/complete/reddit/')

Reddit requires redirect_uri when refreshing the token and it must be the
same value used during the auth process.

RunKeeper

RunKeeper uses OAuth v2 for authentication.

	Register a new application at the RunKeeper API [http://developer.runkeeper.com/healthgraph], and

	fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_RUNKEEPER_KEY = ''
SOCIAL_AUTH_RUNKEEPER_SECRET = ''

Salesforce

Salesforce uses OAuth v2 for Authentication, check the official docs [https://www.salesforce.com/us/developer/docs/api_rest/Content/intro_understanding_web_server_oauth_flow.htm].

	Create an app following the steps in the Defining Connected Apps [https://www.salesforce.com/us/developer/docs/api_rest/Content/intro_defining_remote_access_applications.htm] docs.

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_SALESFORCE_OAUTH2_KEY = '<App UID>'
SOCIAL_AUTH_SALESFORCE_OAUTH2_SECRET = '<App secret>'

	Add the backend to the AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.salesforce.SalesforceOAuth2',
 ...
)

	Then you can start using {% url social:begin 'salesforce-oauth2' %} in
your templates

If using the sandbox mode:

	Fill these settings instead:

SOCIAL_AUTH_SALESFORCE_OAUTH2_SANDBOX_KEY = '<App UID>'
SOCIAL_AUTH_SALESFORCE_OAUTH2_SANDBOX_SECRET = '<App secret>'

	And this backend:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.salesforce.SalesforceOAuth2Sandbox',
 ...
)

	Then you can start using {% url social:begin 'salesforce-oauth2-sandbox' %}
in your templates

Shimmering Verify

Shimmering implemented OAuth2 protocol for their authentication mechanism. To
enable python-social_core-auth support follow this steps:

	Go to Shimmering Developer Console [http://developers.shimmeringverify.com] and create an application.

	Fill App Id and Secret in your project settings:

SOCIAL_AUTH_SHIMMERING_KEY = '...'
SOCIAL_AUTH_SHIMMERING_SECRET = '...'

	Enable the backend:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.shimmering.ShimmeringOAuth2',
 ...
)

Shopify

Shopify uses OAuth 2 for authentication.

To use this backend, you must install the package shopify from the Github
project [https://github.com/Shopify/shopify_python_api]. Currently supports v2+

	Register a new application at Shopify Partners [http://www.shopify.com/partners], and

	Set the Auth Type to OAuth2 in the application settings

	Set the Application URL to http://[your domain]/login/shopify/

	fill API Key and Shared Secret values in your django settings:

SOCIAL_AUTH_SHOPIFY_KEY = ''
SOCIAL_AUTH_SHOPIFY_SECRET = ''

	fill the scope permissions that you require into the settings Shopify API [http://api.shopify.com/authentication.html#scopes]:

SOCIAL_AUTH_SHOPIFY_SCOPE = ['write_script_tags',
 'read_orders',
 'write_customers',
 'read_products']

Sketchfab

Sketchfab uses OAuth 2 for authentication.

To use:

	Follow the steps at Sketchfab Oauth [https://sketchfab.com/developers/oauth], and ask for an
Authorization code grant type.

	Fill the Client id/key and Client Secret values you received
in your django settings:

SOCIAL_AUTH_SKETCHFAB_KEY = ''
SOCIAL_AUTH_SKETCHFAB_SECRET = ''

Skyrock

OAuth based Skyrock Connect.

Skyrock offers per application keys named Consumer Key and Consumer
Secret. To enable Skyrock these two keys are needed. Further documentation
at Skyrock developer resources [http://www.skyrock.com/developer/]:

	Register a new application at Skyrock App Creation [https://wwwskyrock.com/developer/application],

	Your callback domain should match your application URL in your application
configuration.

	Fill Consumer Key and Consumer Secret values:

SOCIAL_AUTH_SKYROCK_KEY = ''
SOCIAL_AUTH_SKYROCK_SECRET = ''

Slack

Slack

	Register a new application at Slack [https://api.slack.com/applications], set the callback URL to
http://example.com/complete/slack/ replacing example.com with your
domain.

	Fill Client ID and Client Secret values in the settings:

SOCIAL_AUTH_SLACK_KEY = ''
SOCIAL_AUTH_SLACK_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_SLACK_SCOPE = [...]

See auth scopes at Slack OAuth docs [https://api.slack.com/docs/oauth].

SoundCloud

SoundCloud uses OAuth2 for its auth mechanism.

	Register a new application at SoundCloud App Registration [http://soundcloud.com/you/apps/new], set your
application name, website and redirect URI.

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_SOUNDCLOUD_KEY = ''
SOCIAL_AUTH_SOUNDCLOUD_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_SOUNDCLOUD_SCOPE = [...]

Possible scope values are * or non-expiring according to their /connect
documentation [http://developers.soundcloud.com/docs/api/reference#connect].

Check the rest of their doc at SoundCloud Developer Documentation [http://developers.soundcloud.com/docs].

Spotify

Spotify supports OAuth 2.

	Register a new application at Spotify Web API [https://developer.spotify.com/spotify-web-api], and follow the
instructions below.

OAuth2

Add the Spotify OAuth2 backend to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.spotify.SpotifyOAuth2',
 ...
)

	Fill App Key and App Secret values in the settings:

SOCIAL_AUTH_SPOTIFY_KEY = ''
SOCIAL_AUTH_SPOTIFY_SECRET = ''

SUSE

This section describes how to setup the different services provided by SUSE and openSUSE.

openSUSE OpenId

openSUSE OpenId works straightforward, not settings are needed. Domains or emails
whitelists can be applied too, check the whitelists settings for details.

Stackoverflow

Stackoverflow uses OAuth 2.0

	“Register For An App Key” at the Stack Exchange API [https://api.stackexchange.com/] site. Set your OAuth
domain and application website settings.

	Add the Client Id, Client Secret and API Key values in settings:

SOCIAL_AUTH_STACKOVERFLOW_KEY = ''
SOCIAL_AUTH_STACKOVERFLOW_SECRET = ''
SOCIAL_AUTH_STACKOVERFLOW_API_KEY = ''

	You can ask for extra permissions with:

SOCIAL_AUTH_STACKOVERFLOW_SCOPE = [...]

Steam OpenId

Steam OpenId works quite straightforward, but to retrieve some user data (known
as player on Steam API) a Steam API Key is needed.

Configurable settings:

	Supply a Steam API Key from Steam Dev [http://steamcommunity.com/dev/apikey]:

SOCIAL_AUTH_STEAM_API_KEY = key

	To save player data provided by Steam into extra_data:

SOCIAL_AUTH_STEAM_EXTRA_DATA = ['player']

StockTwits

StockTwits uses OAuth 2 for authentication.

	Register a new application at https://stocktwits.com/developers/apps

	Set the Website URL to http://[your domain]/

	fill Consumer Key and Consumer Secret values in your django settings:

SOCIAL_AUTH_STOCKTWITS_KEY = ''
SOCIAL_AUTH_STOCKTWITS_SECRET = ''

Strava

Strava uses OAuth v2 for Authentication.

	Register a new application at the Strava API [https://www.strava.com/settings/api], and

	fill Client ID and Client Secret from strava.com values in the settings:

SOCIAL_AUTH_STRAVA_KEY = ''
SOCIAL_AUTH_STRAVA_SECRET = ''

	extra scopes can be defined by using:

SOCIAL_AUTH_STRAVA_SCOPE = ['view_private']

Stripe

Stripe uses OAuth2 for its authorization service. To setup Stripe backend:

	Register a new application at Stripe App Creation [https://manage.stripe.com/#account/applications/settings], and

	Grab the client_id value in Applications tab and fill the App Id
setting:

SOCIAL_AUTH_STRIPE_KEY = 'ca_...'

	Grab the Test Secret Key in the API Keys tab and fille the App
Secret setting:

SOCIAL_AUTH_STRIPE_SECRET = '...'

	Define SOCIAL_AUTH_STRIPE_SCOPE with the desired scope (options are
read_only and read_write):

SOCIAL_AUTH_STRIPE_SCOPE = ['read_only']

	Add the needed backend to SOCIAL_AUTH_AUTHENTICATION_BACKENDS:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.stripe.StripeOAuth2',
 ...
)

More info on Stripe OAuth2 at Integrating OAuth [https://stripe.com/docs/connect/oauth].

Taobao OAuth

Taobao OAuth 2.0 workflow.

	Register a new application at Open Open Taobao [http://open.taobao.com].

	Fill Consumer Key and Consumer Secret values in the settings:

SOCIAL_AUTH_TAOBAO_KEY = ''
SOCIAL_AUTH_TAOBAO_SECRET = ''

By default token is stored in extra_data field.

ThisIsMyJam

ThisIsMyJam uses OAuth1 for its auth mechanism.

	Register a new application at ThisIsMyJam App Registration [https://www.thisismyjam.com/developers], set your
application name, website and redirect URI.

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_THISISMYJAM_KEY = ''
SOCIAL_AUTH_THISISMYJAM_SECRET = ''

Check the rest of their doc at ThisIsMyJam API Docs [https://www.thisismyjam.com/developers/docs].

Trello

Trello provides OAuth1 support for their authentication process.

In order to enable it, follow:

	Generate an Application Key pair at Trello Developers API Keys [https://trello.com/1/appKey/generate]

	Fill Consumer Key and Consumer Secret settings:

SOCIAL_AUTH_TRELLO_KEY = '...'
SOCIAL_AUTH_TRELLO_SECRET = '...'

There are also two optional settings:

	your app name, otherwise the authorization page will say “Let An unknown application use your account?”:

SOCIAL_AUTH_TRELLO_APP_NAME = 'My App'

	the expiration period, social auth defaults to ‘never’, but you can change it:

SOCIAL_AUTH_TRELLO_EXPIRATION = '30days'

TripIt

TripIt offers per application keys named API Key and API Secret.
To enable TripIt these two keys are needed. Further documentation at
TripIt Developer Center [https://www.tripit.com/developer]:

	Register a new application at TripIt App Registration [https://www.tripit.com/developer/create],

	fill API Key and API Secret values:

SOCIAL_AUTH_TRIPIT_KEY = ''
SOCIAL_AUTH_TRIPIT_SECRET = ''

Tumblr

Tumblr uses OAuth 1.0a for authentication.

	Register a new application at http://www.tumblr.com/oauth/apps

	Set the Default callback URL to http://[your domain]/

	fill OAuth Consumer Key and Secret Key values in your Django
settings:

SOCIAL_AUTH_TUMBLR_KEY = ''
SOCIAL_AUTH_TUMBLR_SECRET = ''

Twilio

	Register a new application at Twilio Connect Api [https://www.twilio.com/user/account/connect/apps]

	Fill SOCIAL_AUTH_TWILIO_KEY and SOCIAL_AUTH_TWILIO_SECRET values in
the settings:

SOCIAL_AUTH_TWILIO_KEY = ''
SOCIAL_AUTH_TWILIO_SECRET = ''

	Add desired authentication backends to Django’s SOCIAL_AUTH_AUTHENTICATION_BACKENDS
setting:

'social_core.backends.twilio.TwilioAuth',

	Usage example:

Enter using Twilio

Twitch

Twitch works similar to Facebook (OAuth).

	Register a new application in the connections tab [http://www.twitch.tv/settings/connections] of your Twitch settings
page, set the callback URL to http://example.com/complete/twitch/
replacing example.com with your domain.

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_TWITCH_KEY = ''
SOCIAL_AUTH_TWITCH_SECRET = ''

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_TWITCH_SCOPE = [...]

Twitter

Twitter offers per application keys named Consumer Key and Consumer Secret.
To enable Twitter these two keys are needed. Further documentation at
Twitter development resources [http://dev.twitter.com/pages/auth]:

	Register a new application at Twitter App Creation [http://twitter.com/apps/new],

	Check the Allow this application to be used to Sign in with Twitter
checkbox. If you don’t check this box, Twitter will force your user to login
every time.

	Fill Consumer Key and Consumer Secret values:

SOCIAL_AUTH_TWITTER_KEY = ''
SOCIAL_AUTH_TWITTER_SECRET = ''

	You need to specify an URL callback or the application will be marked as
Client type instead of the Browser. Almost any dummy value will work if
you plan some test.

	You can request user’s Email address (consult Twitter verify
credentials [https://dev.twitter.com/rest/reference/get/account/verify_credentials]), the parameter is sent automatically, but the
applicaton needs to be whitelisted in order to get a valid value.

Twitter usually fails with a 401 error when trying to call the request-token
URL, this is usually caused by server datetime errors (check miscellaneous
section). Installing ntp and syncing the server date with some pool does
the trick.

Uber

Uber uses OAuth v2 for Authentication.

	Register a new application at the Uber API [https://developer.uber.com/dashboard], and follow the instructions below

OAuth2

	Add the Uber OAuth2 backend to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.uber.UberOAuth2',
 ...
)

	Fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_UBER_KEY = ''
SOCIAL_AUTH_UBER_SECRET = ''

	Scope should be defined by using:

SOCIAL_AUTH_UBER_SCOPE = ['profile', 'request']

Untappd

Untappd uses OAuth v2 for Authentication, check the official docs [https://untappd.com/api/docs].

	Create an app by filling out the form here: Add App [https://untappd.com/api/register?register=new]

	Apps are approved on a one-by-one basis, so you’ll need to wait a
few days to get your client ID and secret.

	Fill Client ID and Client Secret values in the settings:

SOCIAL_AUTH_UNTAPPD_KEY = '<App UID>'
SOCIAL_AUTH_UNTAPPD_SECRET = '<App secret>'

	Add the backend to the AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.untappd.UntappdOAuth2',
 ...
)

	Then you can start using {% url social:begin 'untappd' %} in
your templates

Upwork

Upwork supports only OAuth 1.

	Register a new application at Upwork Developers [https://www.upwork.com/services/api/apply].

OAuth1

Add the Upwork OAuth backend to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.upwork.UpworkOAuth',
 ...
)

	Fill App Key and App Secret values in the settings:

SOCIAL_AUTH_UPWORK_KEY = ''
SOCIAL_AUTH_UPWORK_SECRET = ''

Note: For more information please go to Upwork API Reference [https://developers.upwork.com/?lang=python].

Vend

Vend supports OAuth 2.

	Register a new application at Vend Developers Portal [https://developers.vendhq.com/developer/applications]

	Add the Vend OAuth2 backend to your settings page:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.vend.VendOAuth2',
 ...
)

	Fill App Key and App Secret values in the settings:

SOCIAL_AUTH_VEND_OAUTH2_KEY = ''
SOCIAL_AUTH_VEND_OAUTH2_SECRET = ''

More details on their docs [https://developers.vendhq.com/documentation].

Vimeo

Vimeo uses OAuth1 to grant access to their API. In order to get the backend
running follow:

	Register an application at Vimeo Developer Portal [https://developer.vimeo.com/apps/new] filling the required
settings. Ensure to fill App Callback URL field with
http://<your hostname>/complete/vimeo/

	Fill in the Client Id and Client Secret values in your settings:

SOCIAL_AUTH_VIMEO_KEY = ''
SOCIAL_AUTH_VIMEO_SECRET = ''

	Specify scopes with:

SOCIAL_AUTH_VIMEO_SCOPE = [...]

	Add the backend to AUTHENTICATION_BACKENDS:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.vimeo.VimeoOAuth1',
 ...
)

VK.com (former Vkontakte)

VK.com (former Vkontakte) auth service support.

OAuth2

VK.com uses OAuth2 for Authentication.

	Register a new application at the VK.com API [http://vk.com/dev/methods],

	fill Application Id and Application Secret values in the settings:

SOCIAL_AUTH_VK_OAUTH2_KEY = ''
SOCIAL_AUTH_VK_OAUTH2_SECRET = ''

	Add 'social_core.backends.vk.VKOAuth2' into your SOCIAL_AUTH_AUTHENTICATION_BACKENDS.

	Then you can start using /login/vk-oauth2 in your link href.

	Also it’s possible to define extra permissions with:

SOCIAL_AUTH_VK_OAUTH2_SCOPE = [...]

See the VK.com list of permissions [http://vk.com/dev/permissions].

OAuth2 Application

To support OAuth2 authentication for VK.com applications:

	Create your IFrame application at VK.com.

	In application settings specify your IFrame URL mysite.com/vk (current
default).

	Fill Application ID and Application Secret settings:

SOCIAL_AUTH_VK_APP_KEY = ''
SOCIAL_AUTH_VK_APP_SECRET = ''

	Fill user_mode:

SOCIAL_AUTH_VK_APP_USER_MODE = 2

	Possible values:

	
	0: there will be no check whether a user connected to your
application or not

	1: python-social-auth will check is_app_user parameter
VK.com sends when user opens application page one time

	2: (safest) python-social-auth will check status of user
interactively (useful when you have interactive authentication via AJAX)

	Add a snippet similar to this into your login template:

<script src="http://vk.com/js/api/xd_connection.js?2" type="text/javascript"></script>
<script type="text/javascript">
 VK.init(function() {
 VK.addCallback("onApplicationAdded", requestRights);
 VK.addCallback("onSettingsChanged", onSettingsChanged);
 }
);

 function startConnect() {
 VK.callMethod('showInstallBox');
 }

 function requestRights() {
 VK.callMethod('showSettingsBox', 1 + 2); // 1+2 is just an example
 }

 function onSettingsChanged(settings) {
 window.location.reload();
 }
</script>
Click to authenticate

To test, launch the server using sudo ./manage.py mysite.com:80 for
browser to be able to load it when VK.com calls IFrame URL. Open your
VK.com application page via http://vk.com/app<app_id>. Now you are able to
connect to application and login automatically after connection when visiting
application page.

For more details see authentication for VK.com applications [http://www.ikrvss.ru/2011/11/08/django-social-auh-and-vkontakte-application/]

OpenAPI

You can also use VK.com’s own OpenAPI to log in, but you need to provide
HTML template with JavaScript code to authenticate, check below for an example.

	Get an OpenAPI App Id and add it to the settings:

SOCIAL_AUTH_VK_OPENAPI_ID = ''

This app id will be passed to the template as VK_APP_ID.

Snippet example:

<script src="http://vk.com/js/api/openapi.js" type="text/javascript"></script>
<script type="text/javascript">
 var vkAppId = {{ VK_APP_ID|default:"null" }};
 if (vkAppId) {
 VK.init({ apiId: vkAppId });
 }
 function authVK () {
 if (!vkAppId) {
 alert ("Please specify VK.com APP ID in your local settings file");
 return false;
 }
 VK.Auth.login(function(response) {
 var params = "";
 if (response.session) {
 params = "first_name=" + encodeURI(response.session.user.first_name) + "&last_name=" + encodeURI(response.session.user.last_name);
 params += "&nickname=" + encodeURI(response.session.user.nickname) + "&id=" + encodeURI(response.session.user.id);
 }
 window.location = "{{ VK_COMPLETE_URL }}?" + params;
 });
 return false;
 }
</script>
Click to authorize

Weibo OAuth

Weibo OAuth 2.0 workflow.

	Register a new application at Weibo [http://open.weibo.com].

	Fill Consumer Key and Consumer Secret values in the settings:

SOCIAL_AUTH_WEIBO_KEY = ''
SOCIAL_AUTH_WEIBO_SECRET = ''

By default account id, profile_image_url and gender are stored in
extra_data field.

The user name is used by default to build the user instance username,
sometimes this contains non-ASCII characters which might not be desirable for
the website. To avoid this issue it’s possible to use the Weibo domain
which will be inside the ASCII range by defining this setting:

SOCIAL_AUTH_WEIBO_DOMAIN_AS_USERNAME = True

Withings

Withings uses OAuth v1 for Authentication.

	Register a new application at the Withings API [https://oauth.withings.com/partner/add], and

	fill Client ID and Client Secret from withings.com values in the settings:

SOCIAL_AUTH_WITHINGS_KEY = ''
SOCIAL_AUTH_WITHINGS_SECRET = ''

Wunderlist

Wunderlist uses OAuth v2 for Authentication.

	Register a new application at Wunderlist Developer Portal [https://developer.wunderlist.com/applications], and

	fill Client Id and Client Secret values in the settings:

SOCIAL_AUTH_WUNDERLIST_KEY = ''
SOCIAL_AUTH_WUNDERLIST_SECRET = ''

XING

XING uses OAuth1 for their auth mechanism, in order to enable the backend
follow:

	Register a new application at XING Apps Dashboard [https://dev.xing.com/applications],

	Fill Consumer Key and Consumer Secret values:

SOCIAL_AUTH_XING_KEY = ''
SOCIAL_AUTH_XING_SECRET = ''

Yahoo

Yahoo supports OpenId and OAuth2 for their auth flow.

Yahoo OpenId

OpenId doesn’t require any particular configuration beside enabling the backend
in the AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.yahoo.YahooOpenId',
 ...
)

Yahoo OAuth2

OAuth 2.0 workflow, useful if you are planning to use Yahoo’s API.

	Register a new application at Yahoo Developer Center [https://developer.yahoo.com/], set your app domain
and configure scopes (they can’t be overriden by application).

	Fill Consumer Key and Consumer Secret values in the settings:

SOCIAL_AUTH_YAHOO_OAUTH2_KEY = ''
SOCIAL_AUTH_YAHOO_OAUTH2_SECRET = ''

Yammer

Yammer users OAuth2 for their auth mechanism, this application supports Yammer
OAuth2 in production and staging modes.

Production Mode

In order to enable the backend, follow:

	Register an application at Client Applications [https://www.yammer.com/client_applications],
set the Redirect URI to http://<your hostname>/complete/yammer/

	Fill Client Key and Client Secret settings:

SOCIAL_AUTH_YAMMER_KEY = '...'
SOCIAL_AUTH_YAMMER_SECRET = '...'

Staging Mode

Staging mode is configured the same as Production Mode, but settings are
prefixed with:

SOCIAL_AUTH_YAMMER_STAGING_*

Zotero

Zotero implements OAuth1 as their authentication mechanism for their Web API v3.

	Go to the Zotero app registration page [https://www.zotero.org/oauth/apps] to register your application.

	Fill the Client ID and Client Secret in your project settings:

SOCIAL_AUTH_ZOTERO_KEY = '...'
SOCIAL_AUTH_ZOTERO_SECRET = '...'

	Enable the backend:

SOCIAL_AUTH_AUTHENTICATION_BACKENDS = (
 ...
 'social_core.backends.zotero.ZoteroOAuth',
 ...
)

Further documentation at Zotero Web API v3 page [https://www.zotero.org/support/dev/web_api/v3/start].

Beginners Guide

This is an attempt to bring together a number of concepts in python-social-auth
(psa) so that you will understand how it fits into your system. This definitely
has a Django flavor to it (because that’s how I learned it).

Understanding PSA URLs

If you have not seen namespaced URLs before, you are about to be introduced.
When you add the PSA entry to your urls.py, it looks like this:

url(r'', include('social_django.urls', namespace='social'))

that “namespace” part on the end is what keeps the names in the PSA-world from
colliding with the names in your app, or other 3rd-party apps. So your login
link will look like this:

Login

(See how “social” in the URL mapping matches the value of “namespace” in the
urls.py entry?)

Understanding Backends

PSA implements a lot of backends. Find the entry in the docs for your backend,
and if it’s there, follow the steps to enable it, which come down to

	Set up SOCIAL_AUTH_{backend} variables in settings.py. (The
settings vary, based on the backends)

	Adding your backend to AUTHENTICATION_BACKENDS in settings.py.

If you need to implement a different backend (for instance, let’s say you
want to use Intuit’s OpenID), you can subclass the nearest one and override
the “name” attribute:

from social_core.backends.open_id import OpenIDAuth

class IntuitOpenID(OpenIDAuth):
 name = 'intuit'

And then add your new backend to AUTHENTICATION_BACKENDS in settings.py.

A couple notes about the pipeline:

The standard pipeline does not log the user in until after the pipeline has
completed. So if you get a value in the user key of the accumulative
dictionary, that implies that the user was logged in when the process started.

Understanding the Pipeline

Reversing a URL like {% url 'social:begin' 'github' %} will give you a url
like:

http://example.com/login/github

And clicking on that link will cause the “pipeline” to be started. The pipeline
is a list of functions that build up data about the user as we go through the
steps of the authentication process. (If you really want to understand the
pipeline, look at the source in social/backends/base.py, and see the
run_pipeline() function in BaseAuth.)

The design contract for each function in the pipeline is:

	The pipeline starts with a four-item dictionary (the accumulative dictionary)
which is updated with the results of each function in the pipeline. The
initial four values are:

	strategy

	contains a strategy object

	backend

	contains the backend being used during this pipeline run

	request

	contains a dictionary of the request keys. Note to Django users – this is
not an HttpRequest object, it is actually the results of
request.REQUEST.

	details

	which is an empty dict.

	If the function returns a dictionary or something False-ish, add the contents
of the dictionary to an accumulative dictionary (called out in
run_pipeline), and call the next step in the pipeline with the
accumulative dictionary.

	If something else is returned (for example, a subclass of HttpResponse),
then return that to the browser.

	If the pipeline completes, THEN the user is authenticated (logged in). So
if you are finding an authenticated user object while the pipeline is
running, that means that the user was logged in when the pipeline started.

There is one pipeline for your site as a whole – if you have backend-specific
logic, you have to make your pipeline steps smart enough to skip the step if it
is not relevant. This is as simple as:

def my_custom_step(strategy, backend, request, details, *args, **kwargs):
 if backend_name != 'my_custom_backend':
 return
 # otherwise, do the special steps for your custom backend

Interrupting the Pipeline (and communicating with views)

Let’s say you want to add a custom step in the pipeline – you want the user
to establish a password so that they can come directly to your site in the
future. We can do that with the @partial decorator, which tells the
pipeline to keep track of where it is so that it can be restarted.

The first thing we need to do is set up a way for our views to communicate with
the pipeline. That is done by adding a value to the settings file to tell
us which values should be passed back and forth between the session and the
pipeline:

SOCIAL_AUTH_FIELDS_STORED_IN_SESSION = ['local_password',]

In our pipeline code, we would have:

from django.shortcuts import redirect
from django.contrib.auth.models import User
from social_core.pipeline.partial import partial

partial says "we may interrupt, but we will come back here again"
@partial
def collect_password(strategy, backend, request, details, *args, **kwargs):
 # session 'local_password' is set by the pipeline infrastructure
 # because it exists in FIELDS_STORED_IN_SESSION
 local_password = strategy.session_get('local_password', None)
 if not local_password:
 # if we return something besides a dict or None, then that is
 # returned to the user -- in this case we will redirect to a
 # view that can be used to get a password
 return redirect("myapp.views.collect_password")

 # grab the user object from the database (remember that they may
 # not be logged in yet) and set their password. (Assumes that the
 # email address was captured in an earlier step.)
 user = User.objects.get(email=kwargs['email'])
 user.set_password(local_password)
 user.save()

 # continue the pipeline
 return

In our view code, we would have something like:

class PasswordForm(forms.Form):
 secret_word = forms.CharField(max_length=10)

def get_user_password(request):
 if request.method == 'POST':
 form = PasswordForm(request.POST)
 if form.is_valid():
 # because of FIELDS_STORED_IN_SESSION, this will get copied
 # to the request dictionary when the pipeline is resumed
 request.session['local_password'] = form.cleaned_data['secret_word']

 # once we have the password stashed in the session, we can
 # tell the pipeline to resume by using the "complete" endpoint
 return redirect(reverse('social:complete', args=("backend_name,")))
 else:
 form = PasswordForm()

 return render(request, "password_form.html")

Note that the social:complete will re-enter the pipeline with the same
function that interrupted it (in this case, collect_password).

Disconnect and Logging Out

It’s a common misconception that the disconnect action is the same as
logging the user out, but this is not the case.

Disconnect is the way that your users can ask your project to “forget about
my account”. This implies removing the UserSocialAuth instance that was
created, this also implies that the user won’t be able to login back into your
site with the social account. Instead the action will be a signup, a new user
instance will be created, not related to the previous one.

Logging out is just a way to say “forget my current session”, and usually
implies removing cookies, invalidating a session hash, etc. The many frameworks
have their own ways to logout an account (Django has django.contrib.auth.logout),
flask-login has it’s own way too with logout_user() [https://github.com/maxcountryman/flask-login/blob/a96de342eae560deec008a02179f593c3799b3ba/flask_login.py#L718-L739].

Since disconnecting a social account means that the user won’t be able to log
back in with that social provider into the same user, python-social-auth will
check that the user account is in a valid state for disconnection (it has at
least one more social account associated, or a password, etc). This behavior
can be overridden by changing the Disconnection Pipeline.

Testing python-social-auth

Testing the application is fair simple, just met the dependencies and run the
testing suite.

The testing suite uses HTTPretty [https://github.com/gabrielfalcao/HTTPretty] to mock server responses, it’s not a live
test against the providers API, to do it that way, a browser and a tool like
Selenium are needed, that’s slow, prone to errors on some cases, and some of
the application examples must be running to perform the testing. Plus real Key
and Secret pairs, in the end it’s a mess to test functionality which is the
real point.

By mocking the server responses, we can test the backends functionality (and
other areas too) easily and quick.

Installing dependencies

Go to the tests [https://github.com/python-social-auth/social-core/tree/master/social_core/tests] directory and install the dependencies listed in the
requirements.txt [https://github.com/python-social-auth/social-core/blob/master/social_core/tests/requirements.txt]. Then run with nosetests command, or with the
run_tests.sh script.

Tox

You can use tox [http://tox.readthedocs.org/] to test compatibility against all supported Python versions:

$ pip install tox # if not present
$ tox

Pending

At the moment only OAuth1, OAuth2 and OpenId backends are being tested, and
just login and partial pipeline features are covered by the test. There’s still
a lot to work on, like:

	Frameworks support

Use Cases

Some miscellaneous options and use cases for python-social-auth [https://github.com/python-social-auth].

Return the user to the original page

There’s a common scenario to return the user back to the original page from
where they requested to login. For that purpose, the usual next query-string
argument is used. The value of this parameter will be stored in the session and
later used to redirect the user when login was successful.

In order to use it, just define it with your link. For instance, when using
Django:

Login with Facebook

Pass custom GET/POST parameters and retrieve them on authentication

In some cases, you might need to send data over the URL, and retrieve it while
processing the after-effect. For example, for conditionally executing code in
custom pipelines.

In such cases, add it to FIELDS_STORED_IN_SESSION.

In your settings:

FIELDS_STORED_IN_SESSION = ['key']

In template:

Login with Facebook

In your custom pipeline, retrieve it using:

strategy.session_get('key')

Retrieve Google+ Friends

Google provides a People API endpoint [https://developers.google.com/+/api/latest/people/list] to retrieve the people in your circles
on Google+. In order to access that API first we need to define the needed
scope:

SOCIAL_AUTH_GOOGLE_OAUTH2_SCOPE = [
 'https://www.googleapis.com/auth/plus.login'
]

Once we have the access token we can call the API like this:

import requests

user = User.objects.get(...)
social = user.social_auth.get(provider='google-oauth2')
response = requests.get(
 'https://www.googleapis.com/plus/v1/people/me/people/visible',
 params={'access_token': social.extra_data['access_token']}
)
friends = response.json()['items']

Associate users by email

Sometimes it’s desirable that social accounts are automatically associated if
the email already matches a user account.

For example, if a user signed up with his Facebook account, then logged out and
next time tries to use Google OAuth2 to login, it could be nice (if both social
sites have the same email address configured) that the user gets into his
initial account created by Facebook backend.

This scenario is possible by enabling the associate_by_email pipeline
function, like this:

SOCIAL_AUTH_PIPELINE = (
 'social_core.pipeline.social_auth.social_details',
 'social_core.pipeline.social_auth.social_uid',
 'social_core.pipeline.social_auth.auth_allowed',
 'social_core.pipeline.social_auth.social_user',
 'social_core.pipeline.user.get_username',
 'social_core.pipeline.social_auth.associate_by_email', # <--- enable this one
 'social_core.pipeline.user.create_user',
 'social_core.pipeline.social_auth.associate_user',
 'social_core.pipeline.social_auth.load_extra_data',
 'social_core.pipeline.user.user_details',
)

This feature is disabled by default because it’s not 100% secure to automate
this process with all the backends. Not all the providers will validate your
email account and others users could take advantage of that.

Take for instance User A registered in your site with the email
foo@bar.com. Then a malicious user registers into another provider that
doesn’t validate his email with that same account. Finally this user will turn
to your site (which supports that provider) and sign up to it, since the email
is the same, the malicious user will take control over the User A account.

Signup by OAuth access_token

It’s a common scenario that mobile applications will use an SDK to signup
a user within the app, but that signup won’t be reflected by
python-social-auth [https://github.com/python-social-auth] unless the corresponding database entries are created. In
order to do so, it’s possible to create a view / route that creates those
entries by a given access_token. Take the following code for instance (the
code follows Django conventions, but versions for others frameworks can be
implemented easily):

from django.contrib.auth import login

from social_django.utils import psa

Define an URL entry to point to this view, call it passing the
access_token parameter like ?access_token=<token>. The URL entry must
contain the backend, like this:
#
url(r'^register-by-token/(?P<backend>[^/]+)/$',
'register_by_access_token')

@psa('social:complete')
def register_by_access_token(request, backend):
 # This view expects an access_token GET parameter, if it's needed,
 # request.backend and request.strategy will be loaded with the current
 # backend and strategy.
 token = request.GET.get('access_token')
 user = request.backend.do_auth(request.GET.get('access_token'))
 if user:
 login(request, user)
 return 'OK'
 else:
 return 'ERROR'

The snippet above is quite simple, it doesn’t return JSON and usually this call
will be done by AJAX. It doesn’t return the user information, but that’s
something that can be extended and filled to suit the project where it’s going
to be used.

	Note: when dealing with OAuth1, the access_token is

	actually a query-string composed by oauth_token and
oauth_token_secret, python-social-auth [https://github.com/python-social-auth] expects this to be a
dict with those keys, but if an string is detected, it will treat
it as a query string in the form oauth_token=123&oauth_token_secret=456.

Multiple scopes per provider

At the moment python-social-auth [https://github.com/python-social-auth] doesn’t provide a method to define multiple
scopes for single backend, this is usually desired since it’s recommended to
ask the user for the minimum scope possible and increase the access when it’s
really needed. It’s possible to add a new backend extending the original one to
accomplish that behavior. There are two ways to do it.

	Overriding get_scope() method:

from social_core.backends.facebook import FacebookOAuth2

class CustomFacebookOAuth2(FacebookOauth2):
 def get_scope(self):
 scope = super(CustomFacebookOAuth2, self).get_scope()
 if self.data.get('extrascope'):
 scope = scope + [('foo', 'bar')]
 return scope

This method is quite simple, it overrides the method that returns the scope
value in a backend (get_scope()) and adds extra values tot he list if it
was indicated by a parameter in the GET or POST data
(self.data).

Put this new backend in some place in your project and replace the original
FacebookOAuth2 in AUTHENTICATION_BACKENDS with this new version.

When overriding this method, take into account that the default output the
base class for get_scope() is the raw value from the settings (whatever
they are defined), doing this will actually update the value in your
settings for all the users:

scope = super(CustomFacebookOAuth2, self).get_scope()
scope += ['foo', 'bar']

Instead do it like this:

scope = super(CustomFacebookOAuth2, self).get_scope()
scope = scope + ['foo', 'bar']

	It’s possible to do the same by defining a second backend which extends from
the original but overrides the name, this will imply new URLs and also new
settings for the new backend (since the name is used to build the settings
names), it also implies a new application in the provider since not all
providers give you the option of defining multiple redirect URLs. To do it
just add a backend like:

from social_core.backends.facebook import FacebookOAuth2

class CustomFacebookOAuth2(FacebookOauth2):
 name = 'facebook-custom'

Put this new backend in some place in your project keeping the original
FacebookOAuth2 in AUTHENTICATION_BACKENDS. Now a new set of URLs
will be functional:

/login/facebook-custom
/complete/facebook-custom
/disconnect/facebook-custom

And also a new set of settings:

SOCIAL_AUTH_FACEBOOK_CUSTOM_KEY = '...'
SOCIAL_AUTH_FACEBOOK_CUSTOM_SECRET = '...'
SOCIAL_AUTH_FACEBOOK_CUSTOM_SCOPE = [...]

When the extra permissions are needed, just redirect the user to
/login/facebook-custom and then get the social auth entry for this new
backend with user.social_auth.get(provider='facebook-custom') and use
the access_token in it.

Enable a user to choose a username from his World of Warcraft characters

If you want to register new users on your site via battle.net, you can enable
these users to choose a username from their own World-of-Warcraft characters.
To do this, use the battlenet-oauth2 backend along with a small form to
choose the username.

The form is rendered via a partial pipeline item like this:

@partial
def pick_character_name(backend, details, response, is_new=False, *args, **kwargs):
 if backend.name == 'battlenet-oauth2' and is_new:
 data = backend.strategy.request_data()
 if data.get('character_name') is None:
 # New user and didn't pick a character name yet, so we render
 # and send a form to pick one. The form must do a POST/GET
 # request to the same URL (/complete/battlenet-oauth2/). In this
 # example we expect the user option under the key:
 # character_name
 # you have to filter the result list according to your needs.
 # In this example, only guild members are allowed to sign up.
 char_list = [
 c['name'] for c in backend.get_characters(response.get('access_token'))
 if 'guild' in c and c['guild'] == '<guild name>'
]
 return render_to_response('pick_character_form.html', {'charlist': char_list, })
 else:
 # The user selected a character name
 return {'username': data.get('character_name')}

Don’t forget to add the partial to the pipeline:

SOCIAL_AUTH_PIPELINE = (
 'social_core.pipeline.social_auth.social_details',
 'social_core.pipeline.social_auth.social_uid',
 'social_core.pipeline.social_auth.auth_allowed',
 'social_core.pipeline.social_auth.social_user',
 'social_core.pipeline.user.get_username',
 'path.to.pick_character_name',
 'social_core.pipeline.user.create_user',
 'social_core.pipeline.social_auth.associate_user',
 'social_core.pipeline.social_auth.load_extra_data',
 'social_core.pipeline.user.user_details',
)

It needs to be somewhere before create_user because the partial will change the
username according to the users choice.

Re-prompt Google OAuth2 users to refresh the refresh_token

A refresh_token also expire, a refresh_token can be lost, but they can
also be refreshed (or re-fetched) if you ask to Google the right way. In order
to do so, set this setting:

SOCIAL_AUTH_GOOGLE_OAUTH2_AUTH_EXTRA_ARGUMENTS = {
 'access_type': 'offline',
 'approval_prompt': 'auto'
}

Then link the users to /login/google-oauth2?approval_prompt=force. If you
want to refresh the refresh_token only on those users that don’t have it,
do it with a pipeline function:

def redirect_if_no_refresh_token(backend, response, social, *args, **kwargs):
 if backend.name == 'google-oauth2' and social and \
 response.get('refresh_token') is None and \
 social.extra_data.get('refresh_token') is None:
 return redirect('/login/google-oauth2?approval_prompt=force')

Set this pipeline after social_user:

SOCIAL_AUTH_PIPELINE = (
 'social_core.pipeline.social_auth.social_details',
 'social_core.pipeline.social_auth.social_uid',
 'social_core.pipeline.social_auth.auth_allowed',
 'social_core.pipeline.social_auth.social_user',
 'path.to.redirect_if_no_refresh_token',
 'social_core.pipeline.user.get_username',
 'social_core.pipeline.user.create_user',
 'social_core.pipeline.social_auth.associate_user',
 'social_core.pipeline.social_auth.load_extra_data',
 'social_core.pipeline.user.user_details',
)

Thanks

python-social-auth [https://github.com/python-social-auth] is the result of almost 3 years of development done on
django-social-auth [https://github.com/omab/django-social-auth] which is the result of my initial work and the thousands
lines of code contributed by so many developers that took time to work on
improvements, report bugs and hunt them down to propose a fix. So, here is
a big list of users that helped to build this library (if somebody is missed
let me know and I’ll update the list):

	kjoconnor [https://github.com/kjoconnor]

	krvss [https://github.com/krvss]

	estebistec [https://github.com/estebistec]

	mrmch [https://github.com/mrmch]

	uruz [https://github.com/uruz]

	maraujop [https://github.com/maraujop]

	bacher09 [https://github.com/bacher09]

	dokterbob [https://github.com/dokterbob]

	hassek [https://github.com/hassek]

	andrusha [https://github.com/andrusha]

	vicalloy [https://github.com/vicalloy]

	caioariede [https://github.com/caioariede]

	danielgtaylor [https://github.com/danielgtaylor]

	stephenmcd [https://github.com/stephenmcd]

	gugu [https://github.com/gugu]

	yrik [https://github.com/yrik]

	dhendo [https://github.com/dhendo]

	yekibud [https://github.com/yekibud]

	tmackenzie [https://github.com/tmackenzie]

	LuanP [https://github.com/LuanP]

	jezdez [https://github.com/jezdez]

	serdardalgic [https://github.com/serdardalgic]

	Jolmberg [https://github.com/Jolmberg]

	ChrisCooper [https://github.com/ChrisCooper]

	marselester [https://github.com/marselester]

	eshellman [https://github.com/eshellman]

	micrypt [https://github.com/micrypt]

	revolunet [https://github.com/revolunet]

	dasevilla [https://github.com/dasevilla]

	seansay [https://github.com/seansay]

	hepochen [https://github.com/hepochen]

	gibuloto [https://github.com/gibuloto]

	crodjer [https://github.com/crodjer]

	sidmitra [https://github.com/sidmitra]

	ryr [https://github.com/ryr]

	inve1 [https://github.com/inve1]

	mback2k [https://github.com/mback2k]

	hannesstruss [https://github.com/hannesstruss]

	NorthIsUp [https://github.com/NorthIsUp]

	tonyxiao [https://github.com/tonyxiao]

	dhepper [https://github.com/dhepper]

	Troytft [https://github.com/Troytft]

	gardaud [https://github.com/gardaud]

	oinopion [https://github.com/oinopion]

	gameguy43 [https://github.com/gameguy43]

	vinigracindo [https://github.com/vinigracindo]

	syabro [https://github.com/syabro]

	bashmish [https://github.com/bashmish]

	ggreer [https://github.com/ggreer]

	avillavi [https://github.com/avillavi]

	r4vi [https://github.com/r4vi]

	roderyc [https://github.com/roderyc]

	daonb [https://github.com/daonb]

	slon7 [https://github.com/slon7]

	JasonGiedymin [https://github.com/JasonGiedymin]

	tymofij [https://github.com/tymofij]

	Cassus [https://github.com/Cassus]

	martey [https://github.com/martey]

	t0m [https://github.com/t0m]

	johnthedebs [https://github.com/johnthedebs]

	jammons [https://github.com/jammons]

	stefanw [https://github.com/stefanw]

	maxgrosse [https://github.com/maxgrosse]

	mattucf [https://github.com/mattucf]

	tadeo [https://github.com/tadeo]

	haxoza [https://github.com/haxoza]

	bradbeattie [https://github.com/bradbeattie]

	henward0 [https://github.com/henward0]

	bernardokyotoku [https://github.com/bernardokyotoku]

	czpython [https://github.com/czpython]

	glasscube42 [https://github.com/glasscube42]

	assiotis [https://github.com/assiotis]

	dbaxa [https://github.com/dbaxa]

	JasonSanford [https://github.com/JasonSanford]

	originell [https://github.com/originell]

	cihann [https://github.com/cihann]

	niftynei [https://github.com/niftynei]

	mikesun [https://github.com/mikesun]

	1st [https://github.com/1st]

	betonimig [https://github.com/betonimig]

	ozexpert [https://github.com/ozexpert]

	stephenLee [https://github.com/stephenLee]

	julianvargasalvarez [https://github.com/julianvargasalvarez]

	youngrok [https://github.com/youngrok]

	garrypolley [https://github.com/garrypolley]

	amirouche [https://github.com/amirouche]

	fmoga [https://github.com/fmoga]

	pydanny [https://github.com/pydanny]

	pygeek [https://github.com/pygeek]

	dgouldin [https://github.com/dgouldin]

	kotslon [https://github.com/kotslon]

	kirkchris [https://github.com/kirkchris]

	barracel [https://github.com/barracel]

	sayar [https://github.com/sayar]

	kulbir [https://github.com/kulbir]

	Morgul [https://github.com/Morgul]

	spstpl [https://github.com/spstpl]

	bluszcz [https://github.com/bluszcz]

	vbsteven [https://github.com/vbsteven]

	sbassi [https://github.com/sbassi]

	aspcanada [https://github.com/aspcanada]

	browniebroke [https://github.com/browniebroke]

Copyrights and Licence

python-social-auth is protected by BSD licence. Check the LICENCE [https://github.com/python-social-auth/social-core/blob/master/LICENSE] for
details.

The base work was derived from django-social-auth [https://github.com/omab/django-social-auth] work and copyrighted too,
check django-social-auth LICENCE [https://github.com/omab/django-social-auth/blob/master/LICENSE] for details:

Index

 nav.xhtml

 Table of Contents

 		Welcome to Python Social Auth's documentation!

 		Introduction

 		Features

 		Supported frameworks

 		Auth providers

 		User data

 		Social accounts association

 		Authentication and disconnection processing

 		Installation

 		Dependencies

 		Get a copy

 		Using the extras options

 		Configuration

 		Configuration

 		Application setup

 		Settings name

 		Keys and secrets

 		Authentication backends

 		URLs options

 		User model

 		Tweaking some fields length

 		Username generation

 		Extra arguments on auth processes

 		Processing redirects and urlopen

 		Whitelists

 		Miscellaneous settings

 		Account disconnection

 		Django Framework

 		Installing

 		Register the application

 		Database

 		Authentication backends

 		URLs entries

 		Templates

 		Template Context Processors

 		ORMs

 		Exceptions Middleware

 		Django Admin

 		Flask Framework

 		Dependencies

 		Installing

 		Enabling the application

 		Models Setup

 		User model reference

 		Global user

 		Flask-Login

 		Remembering sessions

 		Exceptions handling

 		Pyramid Framework

 		Dependencies

 		Installing

 		Enabling the application

 		Models Setup

 		User model reference

 		Global user

 		User login

 		Social auth in templates context

 		CherryPy Framework

 		Dependencies

 		Installing

 		Enabling the application

 		Models Setup

 		Login mechanism

 		Webpy Framework

 		Dependencies

 		Installing

 		Configuration

 		URLs

 		Session

 		User model

 		Porting from django-social-auth

 		Installed apps

 		URLs

 		Porting settings

 		Authentication backends

 		Session

 		Pipeline

 		Authentication Pipeline

 		Disconnection Pipeline

 		Partial Pipeline

 		Email validation

 		Extending the Pipeline

 		Strategies

 		Description

 		Implementing a new Strategy

 		Storage

 		Social User

 		Nonce

 		Association

 		Validation code

 		Storage interface

 		SQLAlchemy and Django mixins

 		Models Examples

 		Exceptions

 		Backends

 		Adding new backend support

 		Adding a new backend

 		Supported backends

 		Non-social backends

 		Base OAuth and OpenId classes

 		Social backends

 		Beginners Guide

 		Understanding PSA URLs

 		Understanding Backends

 		Understanding the Pipeline

 		Interrupting the Pipeline (and communicating with views)

 		Disconnect and Logging Out

 		Testing python-social-auth

 		Installing dependencies

 		Tox

 		Pending

 		Use Cases

 		Return the user to the original page

 		Pass custom GET/POST parameters and retrieve them on authentication

 		Retrieve Google+ Friends

 		Associate users by email

 		Signup by OAuth access_token

 		Multiple scopes per provider

 		Enable a user to choose a username from his World of Warcraft characters

 		Re-prompt Google OAuth2 users to refresh the refresh_token

 		Thanks

 		Copyrights and Licence

_static/plus.png

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_static/up-pressed.png

_static/comment.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

